|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model_name = "BAAI/bge-large-zh-v1.5" |
|
model = SentenceTransformer(model_name, device="cpu") |
|
|
|
|
|
def cal_sim(intent, cand1, cand2, cand3, cand4, cand5): |
|
cand_list = [cand1, cand2, cand3, cand4, cand5] |
|
cand_list = [cand for cand in cand_list if cand] |
|
embeddings_1 = model.encode([intent], normalize_embeddings=True) |
|
embeddings_2 = model.encode(cand_list, normalize_embeddings=True) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
similarity = similarity[0] |
|
sim_output = {} |
|
for i, sim in zip(cand_list, similarity): |
|
if i: |
|
sim_output[i] = float(sim) |
|
return sim_output |
|
|
|
demo = gr.Interface(fn=cal_sim, |
|
inputs=[gr.components.Textbox(label="User query"), |
|
gr.components.Textbox(label="candidate01"), |
|
gr.components.Textbox(label="candidate02"), |
|
gr.components.Textbox(label="candidate03"), |
|
gr.components.Textbox(label="candidate04"), |
|
gr.components.Textbox(label="candidate05"), |
|
], |
|
outputs=gr.components.Label()) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, debug=True) |
|
|