import gradio as gr from sentence_transformers import SentenceTransformer model_name = "BAAI/bge-large-zh-v1.5" model = SentenceTransformer(model_name, device="cpu") def cal_sim(intent, cand1, cand2, cand3, cand4, cand5): cand_list = [cand1, cand2, cand3, cand4, cand5] cand_list = [cand for cand in cand_list if cand] embeddings_1 = model.encode([intent], normalize_embeddings=True) embeddings_2 = model.encode(cand_list, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T similarity = similarity[0] sim_output = {} for i, sim in zip(cand_list, similarity): if i: sim_output[i] = float(sim) return sim_output demo = gr.Interface(fn=cal_sim, inputs=[gr.components.Textbox(label="User query"), gr.components.Textbox(label="candidate01"), gr.components.Textbox(label="candidate02"), gr.components.Textbox(label="candidate03"), gr.components.Textbox(label="candidate04"), gr.components.Textbox(label="candidate05"), ], outputs=gr.components.Label()) if __name__ == "__main__": demo.launch(share=True, debug=True)