Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import requests | |
import os | |
import pandas as pd | |
import folium | |
from geopy.geocoders import Nominatim | |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError | |
import time | |
import random | |
from typing import List, Tuple, Optional | |
import io | |
import concurrent.futures | |
from tqdm import tqdm | |
# NuExtract API configuration | |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5" | |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"} | |
# Geocoding Service with improved performance | |
class GeocodingService: | |
def __init__(self, user_agent: str = None, timeout: int = 10, rate_limit: float = 1.1): | |
if user_agent is None: | |
user_agent = f"python_geocoding_script_{random.randint(1000, 9999)}" | |
self.geolocator = Nominatim( | |
user_agent=user_agent, | |
timeout=timeout | |
) | |
self.rate_limit = rate_limit | |
self.last_request = 0 | |
self.cache = {} # Simple in-memory cache for geocoding results | |
def _rate_limit_wait(self): | |
current_time = time.time() | |
time_since_last = current_time - self.last_request | |
if time_since_last < self.rate_limit: | |
time.sleep(self.rate_limit - time_since_last) | |
self.last_request = time.time() | |
def geocode_location(self, location: str, max_retries: int = 3) -> Optional[Tuple[float, float]]: | |
# Check cache first | |
if location in self.cache: | |
return self.cache[location] | |
for attempt in range(max_retries): | |
try: | |
self._rate_limit_wait() | |
location_data = self.geolocator.geocode(location) | |
if location_data: | |
# Store in cache and return | |
self.cache[location] = (location_data.latitude, location_data.longitude) | |
return self.cache[location] | |
# Cache None results too | |
self.cache[location] = None | |
return None | |
except (GeocoderTimedOut, GeocoderServiceError) as e: | |
if attempt == max_retries - 1: | |
print(f"Failed to geocode '{location}' after {max_retries} attempts: {e}") | |
self.cache[location] = None | |
return None | |
time.sleep(2 ** attempt) # Exponential backoff | |
except Exception as e: | |
print(f"Error geocoding '{location}': {e}") | |
self.cache[location] = None | |
return None | |
return None | |
def process_locations(self, locations: str, progress_callback=None) -> List[Optional[Tuple[float, float]]]: | |
if pd.isna(locations) or not locations: | |
return [] | |
# Handle special case with "dateline_locations" prefix | |
if "dateline_locations" in locations: | |
# Remove the prefix if present | |
locations = locations.replace("dateline_locations", "").strip() | |
# Improved location parsing to handle complex location names with commas | |
# This regex-based approach attempts to identify well-formed location patterns | |
try: | |
import re | |
# Try to find patterns like "City, Country" or standalone names | |
# This handles cities like "Paris, France" as single entities | |
location_pattern = re.compile(r'([A-Za-z\s]+(?:,\s*[A-Za-z\s]+)?)') | |
matches = location_pattern.findall(locations) | |
# Filter out empty matches and strip whitespace | |
location_list = [match.strip() for match in matches if match.strip()] | |
# If regex didn't work properly, fall back to a simpler approach | |
if not location_list: | |
# Simple space-based splitting as a fallback | |
location_list = [loc.strip() for loc in locations.split() if loc.strip()] | |
print(f"Using fallback location parsing: {location_list}") | |
except Exception as e: | |
print(f"Error parsing locations: {e}, using simple splitting") | |
# Simple fallback if regex fails | |
location_list = [loc.strip() for loc in locations.split() if loc.strip()] | |
print(f"Parsed locations: {location_list}") | |
# Process locations in parallel with a limited number of workers | |
return self.process_locations_parallel(location_list, progress_callback) | |
def process_locations_parallel(self, location_list, progress_callback=None, max_workers=4) -> List[Optional[Tuple[float, float]]]: | |
"""Process locations in parallel with progress tracking""" | |
results = [None] * len(location_list) | |
# Use a ThreadPoolExecutor for parallel processing | |
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: | |
# Submit all tasks | |
future_to_index = {executor.submit(self.geocode_location, loc): i | |
for i, loc in enumerate(location_list)} | |
# Process as they complete with progress updates | |
total = len(future_to_index) | |
completed = 0 | |
for future in concurrent.futures.as_completed(future_to_index): | |
index = future_to_index[future] | |
try: | |
results[index] = future.result() | |
except Exception as e: | |
print(f"Error processing location: {e}") | |
results[index] = None | |
# Update progress | |
completed += 1 | |
if progress_callback: | |
progress_callback(completed, total) | |
else: | |
print(f"Geocoded {completed}/{total} locations") | |
return results | |
# Mapping Functions | |
def create_location_map(df: pd.DataFrame, | |
coordinates_col: str = 'coordinates', | |
places_col: str = 'places', | |
title_col: Optional[str] = None) -> folium.Map: | |
# Initialize the map | |
m = folium.Map(location=[0, 0], zoom_start=2) | |
all_coords = [] | |
# Process each row in the DataFrame | |
for idx, row in df.iterrows(): | |
coordinates = row[coordinates_col] | |
places = row[places_col].split(',') if pd.notna(row[places_col]) else [] | |
title = row[title_col] if title_col and pd.notna(row[title_col]) else None | |
# Skip if no coordinates | |
if not coordinates: | |
continue | |
# Make sure places and coordinates lists have the same length | |
# If places list is shorter, pad it with unnamed locations | |
while len(places) < len(coordinates): | |
places.append(f"Unnamed Location {len(places)+1}") | |
# Add individual markers for each location | |
for i, coord in enumerate(coordinates): | |
if coord is not None: # Skip None coordinates | |
lat, lon = coord | |
# Safely get place name, use a default if index is out of range | |
place_name = places[i].strip() if i < len(places) else f"Location {i+1}" | |
# Create popup content | |
popup_content = f"<b>{place_name}</b>" | |
if title: | |
popup_content += f"<br>{title}" | |
# Add marker to the map | |
folium.Marker( | |
location=[lat, lon], | |
popup=folium.Popup(popup_content, max_width=300), | |
tooltip=place_name, | |
).add_to(m) | |
all_coords.append([lat, lon]) | |
# If we have coordinates, fit the map bounds to include all points | |
if all_coords: | |
m.fit_bounds(all_coords) | |
return m | |
# Processing Functions with progress updates | |
def process_excel(file, places_column, progress=None): | |
# Check if file is None | |
if file is None: | |
return None, "No file uploaded", None | |
try: | |
# Update progress | |
if progress: | |
progress(0.1, "Reading Excel file...") | |
# Handle various file object types that Gradio might provide | |
if hasattr(file, 'name'): | |
# Gradio file object | |
df = pd.read_excel(file.name) | |
elif isinstance(file, bytes): | |
# Raw bytes | |
df = pd.read_excel(io.BytesIO(file)) | |
else: | |
# Assume it's a filepath string | |
df = pd.read_excel(file) | |
if places_column not in df.columns: | |
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None | |
# Print column names and first few rows for debugging | |
print(f"Columns in Excel file: {df.columns.tolist()}") | |
print(f"First 3 rows of data:\n{df.head(3)}") | |
if progress: | |
progress(0.2, "Initializing geocoding...") | |
# Initialize the geocoding service | |
geocoder = GeocodingService(user_agent="gradio_map_visualization_app") | |
# Function to update progress during geocoding | |
def geocoding_progress(completed, total): | |
if progress: | |
# Scale progress between 20% and 80% | |
progress_value = 0.2 + (0.6 * (completed / total)) | |
progress(progress_value, f"Geocoding {completed}/{total} locations...") | |
# Process locations and add coordinates with progress tracking | |
print("Starting geocoding process...") | |
# Process each row with progress updates | |
coordinates_list = [] | |
total_rows = len(df) | |
# Create a helper function to safely parse location data from each row | |
def parse_excel_locations(location_data): | |
"""Safely parse location data from Excel cell""" | |
if pd.isna(location_data): | |
return [] | |
# Convert to string to handle numeric or other data types | |
location_data = str(location_data).strip() | |
# Skip empty strings | |
if not location_data: | |
return [] | |
# Look for recognized patterns and split accordingly | |
# First, check if it's a comma-separated list | |
if "," in location_data: | |
# This could be a list like "Berlin, Hamburg, Munich" | |
# Or it could contain locations like "Paris, France" | |
# Try to intelligently parse based on common patterns | |
try: | |
import re | |
# Pattern to match city-country pairs or standalone names | |
# Examples: "Paris, France" or "Berlin" or "New York, NY, USA" | |
location_pattern = re.compile(r'([A-Za-z\s]+(?:,\s*[A-Za-z\s]+){0,2})') | |
matches = location_pattern.findall(location_data) | |
locations = [match.strip() for match in matches if match.strip()] | |
# If our pattern matching didn't work, fall back to simple comma splitting | |
if not locations: | |
locations = [loc.strip() for loc in location_data.split(',') if loc.strip()] | |
return locations | |
except Exception as e: | |
print(f"Regex parsing failed: {e}") | |
# Fallback to simple comma splitting | |
return [loc.strip() for loc in location_data.split(',') if loc.strip()] | |
# Otherwise, treat it as a single location or space-separated list | |
else: | |
# Check if it might be space-separated | |
potential_locations = location_data.split() | |
# If it just looks like one word with no spaces, return it as a single location | |
if len(potential_locations) == 1: | |
return [location_data] | |
# If it has multiple words, it could be a single location name with spaces | |
# or multiple space-separated locations | |
# For safety, treat it as a single location | |
return [location_data] | |
for idx, row in df.iterrows(): | |
location_data = row[places_column] | |
print(f"Processing row {idx+1}/{total_rows}, location data: {location_data}") | |
# Parse the locations from the Excel cell | |
location_list = parse_excel_locations(location_data) | |
print(f"Parsed locations: {location_list}") | |
# Now geocode each location | |
coords = [] | |
for location in location_list: | |
coord = geocoder.geocode_location(location) | |
coords.append(coord) | |
# Update progress | |
if progress_callback: | |
progress_callback(len(coords), len(location_list)) | |
coordinates_list.append(coords) | |
print(f"Processed row {idx+1}/{total_rows}, found coordinates: {coords}") | |
df['coordinates'] = coordinates_list | |
if progress: | |
progress(0.8, "Creating map...") | |
# Create the map | |
map_obj = create_location_map(df, coordinates_col='coordinates', places_col=places_column) | |
# Save the map to a temporary HTML file | |
temp_map_path = "temp_map.html" | |
map_obj.save(temp_map_path) | |
# Save the processed DataFrame to Excel | |
if progress: | |
progress(0.9, "Saving results...") | |
processed_file_path = "processed_data.xlsx" | |
df.to_excel(processed_file_path, index=False) | |
# Statistics | |
total_locations = len(df) | |
successful_geocodes = sum(1 for coords in coordinates_list for coord in coords if coord is not None) | |
failed_geocodes = sum(1 for coords in coordinates_list for coord in coords if coord is None) | |
stats = f"Total data rows: {total_locations}\n" | |
stats += f"Successfully geocoded locations: {successful_geocodes}\n" | |
stats += f"Failed to geocode locations: {failed_geocodes}" | |
if progress: | |
progress(1.0, "Processing complete!") | |
return temp_map_path, stats, processed_file_path | |
except Exception as e: | |
import traceback | |
error_details = traceback.format_exc() | |
print(f"Error processing Excel file: {error_details}") | |
if progress: | |
progress(1.0, f"Error: {str(e)}") | |
return None, f"Error processing file: {str(e)}\n\nDetails: {error_details}", None | |
# NuExtract Functions | |
def extract_info(template, text): | |
try: | |
# Format prompt according to NuExtract-1.5 requirements | |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>" | |
# Call API | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"max_new_tokens": 1000, | |
"do_sample": False | |
} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
# If the model is loading, inform the user | |
if response.status_code == 503: | |
response_json = response.json() | |
if "error" in response_json and "loading" in response_json["error"]: | |
estimated_time = response_json.get("estimated_time", "unknown") | |
return f"⏳ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes" | |
if response.status_code != 200: | |
return f"❌ API Error: {response.status_code}", response.text | |
# Process result | |
result = response.json() | |
# Handle different response formats with careful error handling | |
try: | |
if isinstance(result, list): | |
if len(result) > 0: | |
result_text = result[0].get("generated_text", "") | |
else: | |
return "❌ Empty result list from API", "{}" | |
else: | |
result_text = str(result) | |
# Split at output marker if present | |
if "<|output|>" in result_text: | |
split_parts = result_text.split("<|output|>") | |
if len(split_parts) > 1: | |
json_text = split_parts[1].strip() | |
else: | |
json_text = result_text # Fallback if split didn't work as expected | |
else: | |
json_text = result_text | |
# Try to parse as JSON | |
try: | |
extracted = json.loads(json_text) | |
formatted = json.dumps(extracted, indent=2) | |
except json.JSONDecodeError: | |
return "❌ JSON parsing error", json_text | |
return "✅ Success", formatted | |
except Exception as inner_e: | |
return f"❌ Error processing API result: {str(inner_e)}", "{}" | |
except Exception as e: | |
return f"❌ Error: {str(e)}", "{}" | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Historical Data Analysis Tools") | |
with gr.Tabs(): | |
with gr.TabItem("Text Extraction"): | |
gr.Markdown("## NuExtract-1.5 Structured Data Extraction") | |
with gr.Row(): | |
with gr.Column(): | |
template = gr.Textbox( | |
label="JSON Template", | |
value='{"earthquake location": "", "dateline location": ""}', | |
lines=5 | |
) | |
text = gr.Textbox( | |
label="Text to Extract From", | |
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daß in Yokohama bei einem Erdbeben sechs Personen getötet und 22 verwundet, in Tokio vier getötet und 22 verwundet wurden. In Yokohama seien 6VV Häuser zerstört worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind Brände ausgebrochen. Ein Eisenbahnzug stürzte in den Vajugawafluß zwischen Gotemba und Tokio. Sechs Züge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 größere Erdbeben zu verzeichnen gewesen.", | |
lines=8 | |
) | |
extract_btn = gr.Button("Extract Information", variant="primary") | |
with gr.Column(): | |
status = gr.Textbox(label="Status") | |
output = gr.Textbox(label="Output", lines=10) | |
extract_btn.click( | |
fn=extract_info, | |
inputs=[template, text], | |
outputs=[status, output] | |
) | |
with gr.TabItem("Geocoding & Mapping"): | |
gr.Markdown("## Location Mapping Tool") | |
with gr.Row(): | |
with gr.Column(): | |
excel_file = gr.File(label="Upload Excel File") | |
places_column = gr.Textbox(label="Places Column Name", value="places") | |
process_btn = gr.Button("Process and Map", variant="primary") | |
with gr.Column(): | |
progress_bar = gr.Progress() | |
map_output = gr.HTML(label="Map Visualization") | |
stats_output = gr.Textbox(label="Statistics", lines=3) | |
processed_file = gr.File(label="Processed Data", visible=True, interactive=False) | |
def process_and_map(file, column, progress=gr.Progress()): | |
if file is None: | |
return None, "Please upload an Excel file", None | |
try: | |
# Initialize progress | |
progress(0, "Starting process...") | |
# Process the file with progress updates | |
map_path, stats, processed_path = process_excel(file, column, progress) | |
if map_path and processed_path: | |
with open(map_path, "r") as f: | |
map_html = f.read() | |
return map_html, stats, processed_path | |
else: | |
return None, stats, None | |
except Exception as e: | |
return None, f"Error: {str(e)}", None | |
process_btn.click( | |
fn=process_and_map, | |
inputs=[excel_file, places_column], | |
outputs=[map_output, stats_output, processed_file] | |
) | |
if __name__ == "__main__": | |
demo.launch() |