Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,26 +3,44 @@ import torch
|
|
3 |
import json
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def test_function(template, text):
|
8 |
-
print(f"
|
9 |
return "Button clicked successfully", "Function was called"
|
10 |
|
11 |
-
# Real extraction function
|
12 |
def extract_info(template, text):
|
|
|
|
|
|
|
13 |
try:
|
14 |
# Format prompt according to NuExtract-1.5 requirements
|
15 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
|
|
16 |
|
17 |
# Tokenize
|
18 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
19 |
|
20 |
-
# Generate
|
21 |
print("Generating output...")
|
22 |
outputs = model.generate(
|
23 |
**inputs,
|
24 |
max_new_tokens=1000,
|
25 |
-
do_sample=False
|
|
|
26 |
)
|
27 |
|
28 |
# Decode and extract result
|
@@ -37,33 +55,19 @@ def extract_info(template, text):
|
|
37 |
|
38 |
# Try to parse as JSON
|
39 |
print("Parsing JSON...")
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
return "β
Success", formatted
|
44 |
except Exception as e:
|
45 |
-
print(f"Error: {str(e)}")
|
46 |
return f"β Error: {str(e)}", "{}"
|
47 |
|
48 |
-
#
|
49 |
-
try:
|
50 |
-
print("Loading model...")
|
51 |
-
model_name = "numind/NuExtract-1.5"
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
-
model = AutoModelForCausalLM.from_pretrained(
|
54 |
-
model_name,
|
55 |
-
torch_dtype=torch.float16,
|
56 |
-
device_map="auto",
|
57 |
-
trust_remote_code=True
|
58 |
-
)
|
59 |
-
print("Model loaded successfully")
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Model loading error: {e}")
|
62 |
-
# Create dummy function for testing UI
|
63 |
-
def extract_info(template, text):
|
64 |
-
return "Model failed to load", "Cannot process request"
|
65 |
-
|
66 |
-
# Create a very simple interface
|
67 |
with gr.Blocks() as demo:
|
68 |
gr.Markdown("# NuExtract-1.5 Extraction Tool")
|
69 |
|
@@ -88,7 +92,7 @@ with gr.Blocks() as demo:
|
|
88 |
status = gr.Textbox(label="Status")
|
89 |
output = gr.Textbox(label="Output", lines=10)
|
90 |
|
91 |
-
# Connect both buttons
|
92 |
test_btn.click(
|
93 |
fn=test_function,
|
94 |
inputs=[template, text],
|
@@ -101,6 +105,5 @@ with gr.Blocks() as demo:
|
|
101 |
outputs=[status, output]
|
102 |
)
|
103 |
|
104 |
-
# Launch the app
|
105 |
if __name__ == "__main__":
|
106 |
demo.launch()
|
|
|
3 |
import json
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
+
# Initialize model with error handling
|
7 |
+
try:
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-1.5")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
"numind/NuExtract-1.5",
|
11 |
+
device_map="auto",
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
trust_remote_code=True
|
14 |
+
)
|
15 |
+
MODEL_LOADED = True
|
16 |
+
print("Model loaded successfully!")
|
17 |
+
except Exception as e:
|
18 |
+
MODEL_LOADED = False
|
19 |
+
print(f"Model loading failed: {e}")
|
20 |
+
|
21 |
def test_function(template, text):
|
22 |
+
print(f"Test function called with template: {template[:30]} and text: {text[:30]}")
|
23 |
return "Button clicked successfully", "Function was called"
|
24 |
|
|
|
25 |
def extract_info(template, text):
|
26 |
+
if not MODEL_LOADED:
|
27 |
+
return "β Model not loaded", "{}"
|
28 |
+
|
29 |
try:
|
30 |
# Format prompt according to NuExtract-1.5 requirements
|
31 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
32 |
+
print(f"Processing with prompt: {prompt[:100]}...")
|
33 |
|
34 |
# Tokenize
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
36 |
|
37 |
+
# Generate with cache disabled
|
38 |
print("Generating output...")
|
39 |
outputs = model.generate(
|
40 |
**inputs,
|
41 |
max_new_tokens=1000,
|
42 |
+
do_sample=False,
|
43 |
+
use_cache=False # This disables the problematic cache
|
44 |
)
|
45 |
|
46 |
# Decode and extract result
|
|
|
55 |
|
56 |
# Try to parse as JSON
|
57 |
print("Parsing JSON...")
|
58 |
+
try:
|
59 |
+
extracted = json.loads(json_text)
|
60 |
+
formatted = json.dumps(extracted, indent=2)
|
61 |
+
except json.JSONDecodeError:
|
62 |
+
print(f"JSON parsing failed. Raw output: {json_text[:100]}...")
|
63 |
+
return "β JSON parsing error", json_text
|
64 |
+
|
65 |
return "β
Success", formatted
|
66 |
except Exception as e:
|
67 |
+
print(f"Error in extraction: {str(e)}")
|
68 |
return f"β Error: {str(e)}", "{}"
|
69 |
|
70 |
+
# Create a simple interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Blocks() as demo:
|
72 |
gr.Markdown("# NuExtract-1.5 Extraction Tool")
|
73 |
|
|
|
92 |
status = gr.Textbox(label="Status")
|
93 |
output = gr.Textbox(label="Output", lines=10)
|
94 |
|
95 |
+
# Connect both buttons
|
96 |
test_btn.click(
|
97 |
fn=test_function,
|
98 |
inputs=[template, text],
|
|
|
105 |
outputs=[status, output]
|
106 |
)
|
107 |
|
|
|
108 |
if __name__ == "__main__":
|
109 |
demo.launch()
|