Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,153 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import requests
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
|
8 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def extract_info(template, text):
|
15 |
try:
|
16 |
# Format prompt according to NuExtract-1.5 requirements
|
17 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
18 |
-
print(f"Processing with prompt: {prompt[:100]}...")
|
19 |
|
20 |
-
# Call API
|
21 |
payload = {
|
22 |
"inputs": prompt,
|
23 |
"parameters": {
|
@@ -26,11 +157,9 @@ def extract_info(template, text):
|
|
26 |
}
|
27 |
}
|
28 |
|
29 |
-
print("Calling API...")
|
30 |
response = requests.post(API_URL, headers=headers, json=payload)
|
31 |
|
32 |
if response.status_code != 200:
|
33 |
-
print(f"API error: {response.status_code}, {response.text}")
|
34 |
return f"β API Error: {response.status_code}", response.text
|
35 |
|
36 |
# Process result
|
@@ -49,56 +178,88 @@ def extract_info(template, text):
|
|
49 |
json_text = result_text
|
50 |
|
51 |
# Try to parse as JSON
|
52 |
-
print("Parsing JSON...")
|
53 |
try:
|
54 |
extracted = json.loads(json_text)
|
55 |
formatted = json.dumps(extracted, indent=2)
|
56 |
except json.JSONDecodeError:
|
57 |
-
print(f"JSON parsing failed. Raw output: {json_text[:100]}...")
|
58 |
return "β JSON parsing error", json_text
|
59 |
|
60 |
return "β
Success", formatted
|
61 |
except Exception as e:
|
62 |
-
print(f"Error in extraction: {str(e)}")
|
63 |
return f"β Error: {str(e)}", "{}"
|
64 |
|
65 |
-
# Create
|
66 |
with gr.Blocks() as demo:
|
67 |
-
gr.Markdown("#
|
68 |
|
69 |
-
with gr.
|
70 |
-
with gr.
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
status = gr.Textbox(label="Status")
|
88 |
-
output = gr.Textbox(label="Output", lines=10)
|
89 |
-
|
90 |
-
# Connect both buttons
|
91 |
-
test_btn.click(
|
92 |
-
fn=test_function,
|
93 |
-
inputs=[template, text],
|
94 |
-
outputs=[status, output]
|
95 |
-
)
|
96 |
-
|
97 |
-
extract_btn.click(
|
98 |
-
fn=extract_info,
|
99 |
-
inputs=[template, text],
|
100 |
-
outputs=[status, output]
|
101 |
-
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
demo.launch()
|
|
|
2 |
import json
|
3 |
import requests
|
4 |
import os
|
5 |
+
import pandas as pd
|
6 |
+
import folium
|
7 |
+
from geopy.geocoders import Nominatim
|
8 |
+
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
|
9 |
+
import time
|
10 |
+
import random
|
11 |
+
from typing import List, Tuple, Optional
|
12 |
+
import tempfile
|
13 |
+
import io
|
14 |
|
15 |
+
# NuExtract API configuration
|
16 |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
|
17 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
|
18 |
|
19 |
+
# Geocoding Service
|
20 |
+
class GeocodingService:
|
21 |
+
def __init__(self, user_agent: str = None, timeout: int = 10, rate_limit: float = 1.1):
|
22 |
+
if user_agent is None:
|
23 |
+
user_agent = f"python_geocoding_script_{random.randint(1000, 9999)}"
|
24 |
|
25 |
+
self.geolocator = Nominatim(
|
26 |
+
user_agent=user_agent,
|
27 |
+
timeout=timeout
|
28 |
+
)
|
29 |
+
self.rate_limit = rate_limit
|
30 |
+
self.last_request = 0
|
31 |
+
|
32 |
+
def _rate_limit_wait(self):
|
33 |
+
current_time = time.time()
|
34 |
+
time_since_last = current_time - self.last_request
|
35 |
+
if time_since_last < self.rate_limit:
|
36 |
+
time.sleep(self.rate_limit - time_since_last)
|
37 |
+
self.last_request = time.time()
|
38 |
+
|
39 |
+
def geocode_location(self, location: str, max_retries: int = 3) -> Optional[Tuple[float, float]]:
|
40 |
+
for attempt in range(max_retries):
|
41 |
+
try:
|
42 |
+
self._rate_limit_wait()
|
43 |
+
location_data = self.geolocator.geocode(location)
|
44 |
+
if location_data:
|
45 |
+
return (location_data.latitude, location_data.longitude)
|
46 |
+
return None
|
47 |
+
except (GeocoderTimedOut, GeocoderServiceError) as e:
|
48 |
+
if attempt == max_retries - 1:
|
49 |
+
print(f"Failed to geocode '{location}' after {max_retries} attempts: {e}")
|
50 |
+
return None
|
51 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error geocoding '{location}': {e}")
|
54 |
+
return None
|
55 |
+
return None
|
56 |
+
|
57 |
+
def process_locations(self, locations: str) -> List[Optional[Tuple[float, float]]]:
|
58 |
+
if pd.isna(locations) or not locations:
|
59 |
+
return []
|
60 |
+
|
61 |
+
location_list = [loc.strip() for loc in locations.split(',')]
|
62 |
+
return [self.geocode_location(loc) for loc in location_list]
|
63 |
+
|
64 |
+
# Mapping Functions
|
65 |
+
def create_location_map(df: pd.DataFrame,
|
66 |
+
coordinates_col: str = 'coordinates',
|
67 |
+
places_col: str = 'places',
|
68 |
+
title_col: Optional[str] = None) -> folium.Map:
|
69 |
+
# Initialize the map
|
70 |
+
m = folium.Map(location=[0, 0], zoom_start=2)
|
71 |
+
all_coords = []
|
72 |
+
|
73 |
+
# Process each row in the DataFrame
|
74 |
+
for idx, row in df.iterrows():
|
75 |
+
coordinates = row[coordinates_col]
|
76 |
+
places = row[places_col].split(',') if pd.notna(row[places_col]) else []
|
77 |
+
title = row[title_col] if title_col and pd.notna(row[title_col]) else None
|
78 |
+
|
79 |
+
# Skip if no coordinates
|
80 |
+
if not coordinates:
|
81 |
+
continue
|
82 |
+
|
83 |
+
# Add individual markers for each location
|
84 |
+
for i, (coord, place) in enumerate(zip(coordinates, places)):
|
85 |
+
if coord is not None: # Skip None coordinates
|
86 |
+
lat, lon = coord
|
87 |
+
place_name = place.strip()
|
88 |
+
|
89 |
+
# Create popup content
|
90 |
+
popup_content = f"<b>{place_name}</b>"
|
91 |
+
if title:
|
92 |
+
popup_content += f"<br>{title}"
|
93 |
+
|
94 |
+
# Add marker to the map
|
95 |
+
folium.Marker(
|
96 |
+
location=[lat, lon],
|
97 |
+
popup=folium.Popup(popup_content, max_width=300),
|
98 |
+
tooltip=place_name,
|
99 |
+
).add_to(m)
|
100 |
+
|
101 |
+
all_coords.append([lat, lon])
|
102 |
+
|
103 |
+
# If we have coordinates, fit the map bounds to include all points
|
104 |
+
if all_coords:
|
105 |
+
m.fit_bounds(all_coords)
|
106 |
+
|
107 |
+
return m
|
108 |
+
|
109 |
+
# Processing Functions
|
110 |
+
def process_excel(file, places_column):
|
111 |
+
# Read the Excel file
|
112 |
+
df = pd.read_excel(io.BytesIO(file))
|
113 |
+
|
114 |
+
if places_column not in df.columns:
|
115 |
+
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}"
|
116 |
+
|
117 |
+
# Initialize the geocoding service
|
118 |
+
geocoder = GeocodingService(user_agent="gradio_map_visualization_app")
|
119 |
+
|
120 |
+
# Process locations and add coordinates
|
121 |
+
df['coordinates'] = df[places_column].apply(geocoder.process_locations)
|
122 |
+
|
123 |
+
# Create the map
|
124 |
+
map_obj = create_location_map(df, coordinates_col='coordinates', places_col=places_column)
|
125 |
+
|
126 |
+
# Save the map to a temporary HTML file
|
127 |
+
temp_map_path = "temp_map.html"
|
128 |
+
map_obj.save(temp_map_path)
|
129 |
+
|
130 |
+
# Save the processed DataFrame to Excel
|
131 |
+
processed_file_path = "processed_data.xlsx"
|
132 |
+
df.to_excel(processed_file_path, index=False)
|
133 |
+
|
134 |
+
# Statistics
|
135 |
+
total_locations = len(df)
|
136 |
+
successful_geocodes = df['coordinates'].apply(lambda x: len([c for c in x if c is not None])).sum()
|
137 |
+
failed_geocodes = df['coordinates'].apply(lambda x: len([c for c in x if c is None])).sum()
|
138 |
+
|
139 |
+
stats = f"Total locations: {total_locations}\n"
|
140 |
+
stats += f"Successfully geocoded: {successful_geocodes}\n"
|
141 |
+
stats += f"Failed to geocode: {failed_geocodes}"
|
142 |
+
|
143 |
+
return temp_map_path, stats, processed_file_path
|
144 |
+
|
145 |
+
# NuExtract Functions
|
146 |
def extract_info(template, text):
|
147 |
try:
|
148 |
# Format prompt according to NuExtract-1.5 requirements
|
149 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
|
|
150 |
|
151 |
+
# Call API
|
152 |
payload = {
|
153 |
"inputs": prompt,
|
154 |
"parameters": {
|
|
|
157 |
}
|
158 |
}
|
159 |
|
|
|
160 |
response = requests.post(API_URL, headers=headers, json=payload)
|
161 |
|
162 |
if response.status_code != 200:
|
|
|
163 |
return f"β API Error: {response.status_code}", response.text
|
164 |
|
165 |
# Process result
|
|
|
178 |
json_text = result_text
|
179 |
|
180 |
# Try to parse as JSON
|
|
|
181 |
try:
|
182 |
extracted = json.loads(json_text)
|
183 |
formatted = json.dumps(extracted, indent=2)
|
184 |
except json.JSONDecodeError:
|
|
|
185 |
return "β JSON parsing error", json_text
|
186 |
|
187 |
return "β
Success", formatted
|
188 |
except Exception as e:
|
|
|
189 |
return f"β Error: {str(e)}", "{}"
|
190 |
|
191 |
+
# Create the Gradio interface
|
192 |
with gr.Blocks() as demo:
|
193 |
+
gr.Markdown("# Historical Data Analysis Tools")
|
194 |
|
195 |
+
with gr.Tabs():
|
196 |
+
with gr.TabItem("Text Extraction"):
|
197 |
+
gr.Markdown("## NuExtract-1.5 Structured Data Extraction")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column():
|
201 |
+
template = gr.Textbox(
|
202 |
+
label="JSON Template",
|
203 |
+
value='{"name": "", "email": ""}',
|
204 |
+
lines=5
|
205 |
+
)
|
206 |
+
text = gr.Textbox(
|
207 |
+
label="Text to Extract From",
|
208 |
+
value="Contact: John Smith ([email protected])",
|
209 |
+
lines=8
|
210 |
+
)
|
211 |
+
extract_btn = gr.Button("Extract Information", variant="primary")
|
212 |
+
|
213 |
+
with gr.Column():
|
214 |
+
status = gr.Textbox(label="Status")
|
215 |
+
output = gr.Textbox(label="Output", lines=10)
|
216 |
+
|
217 |
+
extract_btn.click(
|
218 |
+
fn=extract_info,
|
219 |
+
inputs=[template, text],
|
220 |
+
outputs=[status, output]
|
221 |
)
|
222 |
+
|
223 |
+
with gr.TabItem("Geocoding & Mapping"):
|
224 |
+
gr.Markdown("## Location Mapping Tool")
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
excel_file = gr.File(label="Upload Excel File")
|
229 |
+
places_column = gr.Textbox(label="Places Column Name", value="places")
|
230 |
+
process_btn = gr.Button("Process and Map", variant="primary")
|
231 |
+
|
232 |
+
with gr.Column():
|
233 |
+
map_output = gr.HTML(label="Map Visualization")
|
234 |
+
stats_output = gr.Textbox(label="Statistics", lines=3)
|
235 |
+
download_btn = gr.Button("Download Processed Data")
|
236 |
+
processed_file = gr.File(label="Processed Data", visible=False)
|
237 |
+
|
238 |
+
def process_and_map(file, column):
|
239 |
+
if file is None:
|
240 |
+
return None, "Please upload an Excel file", None
|
241 |
+
|
242 |
+
map_path, stats, processed_path = process_excel(file, column)
|
243 |
+
|
244 |
+
if map_path:
|
245 |
+
with open(map_path, "r") as f:
|
246 |
+
map_html = f.read()
|
247 |
+
|
248 |
+
return map_html, stats, processed_path
|
249 |
+
else:
|
250 |
+
return None, stats, None
|
251 |
+
|
252 |
+
process_btn.click(
|
253 |
+
fn=process_and_map,
|
254 |
+
inputs=[excel_file, places_column],
|
255 |
+
outputs=[map_output, stats_output, processed_file]
|
256 |
)
|
257 |
|
258 |
+
download_btn.click(
|
259 |
+
fn=lambda x: x,
|
260 |
+
inputs=[processed_file],
|
261 |
+
outputs=[processed_file]
|
262 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
if __name__ == "__main__":
|
265 |
demo.launch()
|