Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,52 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import json
|
4 |
-
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
"numind/NuExtract-1.5",
|
11 |
-
device_map="auto",
|
12 |
-
torch_dtype=torch.float16,
|
13 |
-
trust_remote_code=True
|
14 |
-
)
|
15 |
-
MODEL_LOADED = True
|
16 |
-
print("Model loaded successfully!")
|
17 |
-
except Exception as e:
|
18 |
-
MODEL_LOADED = False
|
19 |
-
print(f"Model loading failed: {e}")
|
20 |
|
21 |
def test_function(template, text):
|
22 |
print(f"Test function called with template: {template[:30]} and text: {text[:30]}")
|
23 |
return "Button clicked successfully", "Function was called"
|
24 |
|
25 |
def extract_info(template, text):
|
26 |
-
if not MODEL_LOADED:
|
27 |
-
return "❌ Model not loaded", "{}"
|
28 |
-
|
29 |
try:
|
30 |
# Format prompt according to NuExtract-1.5 requirements
|
31 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
32 |
print(f"Processing with prompt: {prompt[:100]}...")
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
**inputs,
|
41 |
-
max_new_tokens=1000,
|
42 |
-
do_sample=False,
|
43 |
-
use_cache=False # This disables the problematic cache
|
44 |
-
)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# Split at output marker
|
51 |
-
if "<|output|>" in
|
52 |
-
json_text =
|
53 |
else:
|
54 |
-
json_text =
|
55 |
|
56 |
# Try to parse as JSON
|
57 |
print("Parsing JSON...")
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import json
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
|
6 |
+
# Use the Hugging Face Inference API instead of loading the model
|
7 |
+
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
|
8 |
+
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def test_function(template, text):
|
11 |
print(f"Test function called with template: {template[:30]} and text: {text[:30]}")
|
12 |
return "Button clicked successfully", "Function was called"
|
13 |
|
14 |
def extract_info(template, text):
|
|
|
|
|
|
|
15 |
try:
|
16 |
# Format prompt according to NuExtract-1.5 requirements
|
17 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
18 |
print(f"Processing with prompt: {prompt[:100]}...")
|
19 |
|
20 |
+
# Call API instead of using local model
|
21 |
+
payload = {
|
22 |
+
"inputs": prompt,
|
23 |
+
"parameters": {
|
24 |
+
"max_new_tokens": 1000,
|
25 |
+
"do_sample": False
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
print("Calling API...")
|
30 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
31 |
|
32 |
+
if response.status_code != 200:
|
33 |
+
print(f"API error: {response.status_code}, {response.text}")
|
34 |
+
return f"❌ API Error: {response.status_code}", response.text
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Process result
|
37 |
+
result = response.json()
|
38 |
+
|
39 |
+
# Handle different response formats
|
40 |
+
if isinstance(result, list) and len(result) > 0:
|
41 |
+
result_text = result[0].get("generated_text", "")
|
42 |
+
else:
|
43 |
+
result_text = str(result)
|
44 |
|
45 |
+
# Split at output marker if present
|
46 |
+
if "<|output|>" in result_text:
|
47 |
+
json_text = result_text.split("<|output|>")[1].strip()
|
48 |
else:
|
49 |
+
json_text = result_text
|
50 |
|
51 |
# Try to parse as JSON
|
52 |
print("Parsing JSON...")
|