Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
from typing import Dict, List, Any, Optional, Tuple
|
9 |
+
import gradio as gr
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
# Vector DB and embedding imports
|
13 |
+
from langchain.vectorstores import FAISS
|
14 |
+
from langchain_openai import OpenAIEmbeddings
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain.schema import Document
|
17 |
+
from langchain_openai import ChatOpenAI
|
18 |
+
from langchain.chains import ConversationalRetrievalChain
|
19 |
+
from langchain.memory import ConversationBufferMemory
|
20 |
+
|
21 |
+
# Visualization imports
|
22 |
+
import plotly.graph_objects as go
|
23 |
+
from sklearn.manifold import TSNE
|
24 |
+
|
25 |
+
# Load environment variables
|
26 |
+
load_dotenv()
|
27 |
+
|
28 |
+
# Check if OPENAI_API_KEY is set
|
29 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
30 |
+
if not OPENAI_API_KEY:
|
31 |
+
print("β οΈ Warning: OPENAI_API_KEY not found in environment variables.")
|
32 |
+
|
33 |
+
# Configuration
|
34 |
+
DEFAULT_DATASET_ID = "2457ea29-fc82-48b0-86ec-3b0755de7515"
|
35 |
+
DEFAULT_MODEL = "gpt-4o-mini"
|
36 |
+
API_BASE_URL = "https://data.cms.gov/data-api/v1"
|
37 |
+
INITIAL_SAMPLE_SIZE = 100 # Start with a small sample
|
38 |
+
|
39 |
+
# Dataset version mapping
|
40 |
+
DATASET_VERSIONS = {
|
41 |
+
# 2025 Data
|
42 |
+
"Q1 2025": "74edb053-bd01-40a0-91a0-4961c1fe6281",
|
43 |
+
|
44 |
+
# 2024 Data
|
45 |
+
"Q1 2024": "6d6e0e8d-64cf-43fb-9ba8-e2ad9b9bb21e",
|
46 |
+
"Q2 2024": "04405289-5635-4b2a-a64f-c4b6415ab6ff",
|
47 |
+
"Q3 2024": "e87f09c2-5ff7-4ddf-b60c-6130995b15cf",
|
48 |
+
"Q4 2024": "e9d278e4-90e8-47ab-9c5b-af2ca64bf352",
|
49 |
+
|
50 |
+
# 2023 Data
|
51 |
+
"Q1 2023": "0b6caf2f-8948-4603-922e-d7f0c52c0a45",
|
52 |
+
"Q2 2023": "46339a0c-0f07-40ed-8975-ddb387c367a4",
|
53 |
+
"Q3 2023": "70efac57-6093-4e1d-ad6a-36f8261f53eb",
|
54 |
+
"Q4 2023": "1df8331a-ed44-41ec-971f-158349658949",
|
55 |
+
|
56 |
+
# 2022 Data
|
57 |
+
"Q1 2022": "5b678653-aa36-455b-9144-1d073ef7991b",
|
58 |
+
|
59 |
+
# 2021 Data
|
60 |
+
"Q1 2021": "7b409bba-ca00-426e-9493-1dc10e5340cc",
|
61 |
+
|
62 |
+
# 2020 Data
|
63 |
+
"Q1 2020": "3870b29c-4312-4fb1-a956-71c148ae5b50",
|
64 |
+
|
65 |
+
# 2019 Data
|
66 |
+
"Q1 2019": "017e6ab7-7e19-4e98-b4fa-30578b47e578",
|
67 |
+
"Q4 2019": "2c209bdb-ed0c-42e0-b027-8a97024b8035"
|
68 |
+
}
|
69 |
+
|
70 |
+
# US States for reference
|
71 |
+
US_STATES = [
|
72 |
+
"", "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA",
|
73 |
+
"HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD",
|
74 |
+
"MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH", "NJ",
|
75 |
+
"NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI", "SC",
|
76 |
+
"SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY",
|
77 |
+
"DC", "PR", "VI"
|
78 |
+
]
|
79 |
+
|
80 |
+
# State names mapping for better UI
|
81 |
+
STATE_NAMES = {
|
82 |
+
"": "All States",
|
83 |
+
"AL": "Alabama", "AK": "Alaska", "AZ": "Arizona", "AR": "Arkansas",
|
84 |
+
"CA": "California", "CO": "Colorado", "CT": "Connecticut", "DE": "Delaware",
|
85 |
+
"FL": "Florida", "GA": "Georgia", "HI": "Hawaii", "ID": "Idaho",
|
86 |
+
"IL": "Illinois", "IN": "Indiana", "IA": "Iowa", "KS": "Kansas",
|
87 |
+
"KY": "Kentucky", "LA": "Louisiana", "ME": "Maine", "MD": "Maryland",
|
88 |
+
"MA": "Massachusetts", "MI": "Michigan", "MN": "Minnesota", "MS": "Mississippi",
|
89 |
+
"MO": "Missouri", "MT": "Montana", "NE": "Nebraska", "NV": "Nevada",
|
90 |
+
"NH": "New Hampshire", "NJ": "New Jersey", "NM": "New Mexico", "NY": "New York",
|
91 |
+
"NC": "North Carolina", "ND": "North Dakota", "OH": "Ohio", "OK": "Oklahoma",
|
92 |
+
"OR": "Oregon", "PA": "Pennsylvania", "RI": "Rhode Island", "SC": "South Carolina",
|
93 |
+
"SD": "South Dakota", "TN": "Tennessee", "TX": "Texas", "UT": "Utah",
|
94 |
+
"VT": "Vermont", "VA": "Virginia", "WA": "Washington", "WV": "West Virginia",
|
95 |
+
"WI": "Wisconsin", "WY": "Wyoming", "DC": "District of Columbia",
|
96 |
+
"PR": "Puerto Rico", "VI": "Virgin Islands"
|
97 |
+
}
|
98 |
+
|
99 |
+
# Dictionary to store multiple datasets
|
100 |
+
rag_systems = {}
|
101 |
+
current_dataset_key = None
|
102 |
+
|
103 |
+
# Gradio theme configuration
|
104 |
+
theme = gr.themes.Soft(
|
105 |
+
primary_hue="blue",
|
106 |
+
secondary_hue="gray",
|
107 |
+
neutral_hue="slate",
|
108 |
+
font=gr.themes.GoogleFont("Inter")
|
109 |
+
)
|
110 |
+
|
111 |
+
def query_cms_api(version_id, state_filter="", max_records=100):
|
112 |
+
"""Query the CMS API with pagination."""
|
113 |
+
url = f"{API_BASE_URL}/dataset/{version_id}/data"
|
114 |
+
all_records = []
|
115 |
+
offset = 0
|
116 |
+
page_size = min(max_records, 100) # Page size, max 100
|
117 |
+
|
118 |
+
# Set up filter parameters
|
119 |
+
params = {
|
120 |
+
'size': page_size,
|
121 |
+
'offset': 0
|
122 |
+
}
|
123 |
+
|
124 |
+
# Add state filter if provided
|
125 |
+
if state_filter and state_filter != "":
|
126 |
+
params[f'filter[STATE_CD]'] = state_filter
|
127 |
+
|
128 |
+
progress_text = f"Querying CMS API...\n"
|
129 |
+
|
130 |
+
# Fetch data with pagination
|
131 |
+
while len(all_records) < max_records:
|
132 |
+
params['offset'] = offset
|
133 |
+
|
134 |
+
try:
|
135 |
+
response = requests.get(url, params=params)
|
136 |
+
|
137 |
+
if response.status_code != 200:
|
138 |
+
error_msg = f"Error: Status {response.status_code}"
|
139 |
+
return [], error_msg
|
140 |
+
|
141 |
+
# Parse the response - the API returns a list directly
|
142 |
+
records = response.json()
|
143 |
+
|
144 |
+
if not records or not isinstance(records, list):
|
145 |
+
if len(all_records) == 0:
|
146 |
+
return [], "No records found"
|
147 |
+
break
|
148 |
+
|
149 |
+
progress_text += f"Retrieved {len(records)} records (offset: {offset})\n"
|
150 |
+
all_records.extend(records)
|
151 |
+
|
152 |
+
# If we got fewer records than requested, we've reached the end
|
153 |
+
if len(records) < page_size:
|
154 |
+
break
|
155 |
+
|
156 |
+
# Move to next page
|
157 |
+
offset += len(records)
|
158 |
+
|
159 |
+
# Add delay to be nice to the API
|
160 |
+
time.sleep(0.5)
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
error_msg = f"Error querying API: {str(e)}"
|
164 |
+
return [], error_msg
|
165 |
+
|
166 |
+
final_records = all_records[:max_records]
|
167 |
+
success_msg = f"Successfully retrieved {len(final_records)} records"
|
168 |
+
|
169 |
+
return final_records, success_msg
|
170 |
+
|
171 |
+
def process_records(records, version):
|
172 |
+
"""Process CMS API records into documents for the RAG system."""
|
173 |
+
# Parse version into quarter and year
|
174 |
+
quarter = "Unknown"
|
175 |
+
year = "Unknown"
|
176 |
+
if ' ' in version:
|
177 |
+
parts = version.split(' ')
|
178 |
+
if len(parts) == 2:
|
179 |
+
quarter, year = parts
|
180 |
+
|
181 |
+
embeddings = OpenAIEmbeddings()
|
182 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
183 |
+
|
184 |
+
# Convert records to documents
|
185 |
+
documents = []
|
186 |
+
|
187 |
+
for record in records:
|
188 |
+
# Format the record as text with explicit time information
|
189 |
+
content = [f"Medicare Provider Data from {quarter} {year}"]
|
190 |
+
content.append(f"Time Period: {quarter} of {year}")
|
191 |
+
|
192 |
+
# Add all fields from the record
|
193 |
+
for key, value in record.items():
|
194 |
+
if value is not None and value != "":
|
195 |
+
content.append(f"{key}: {value}")
|
196 |
+
|
197 |
+
text = "\n".join(content)
|
198 |
+
|
199 |
+
# Create metadata with explicit time fields
|
200 |
+
metadata = {
|
201 |
+
'dataset_version': version,
|
202 |
+
'quarter': quarter,
|
203 |
+
'year': year,
|
204 |
+
'record_id': record.get('ENRLMT_ID', 'unknown')
|
205 |
+
}
|
206 |
+
|
207 |
+
# Add all fields to metadata for better searchability
|
208 |
+
for key, value in record.items():
|
209 |
+
if value is not None and value != "":
|
210 |
+
try:
|
211 |
+
# Convert complex values to strings to avoid serialization issues
|
212 |
+
if not isinstance(value, (str, int, float, bool, type(None))):
|
213 |
+
metadata[key] = str(value)
|
214 |
+
else:
|
215 |
+
metadata[key] = value
|
216 |
+
except:
|
217 |
+
# If there's any issue, convert to string
|
218 |
+
metadata[key] = str(value)
|
219 |
+
|
220 |
+
documents.append(Document(page_content=text, metadata=metadata))
|
221 |
+
|
222 |
+
# Chunk documents
|
223 |
+
chunks = text_splitter.split_documents(documents)
|
224 |
+
|
225 |
+
# Create vector store
|
226 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
227 |
+
|
228 |
+
return vector_store, len(documents), len(chunks)
|
229 |
+
|
230 |
+
def create_progress_callback():
|
231 |
+
"""Create a progress callback for long-running operations."""
|
232 |
+
def callback(message):
|
233 |
+
# In a real Gradio app, this would update a progress bar
|
234 |
+
print(f"Progress: {message}")
|
235 |
+
return callback
|
236 |
+
|
237 |
+
def validate_api_key():
|
238 |
+
"""Validate that the OpenAI API key is set."""
|
239 |
+
api_key = os.getenv('OPENAI_API_KEY')
|
240 |
+
if not api_key:
|
241 |
+
return False, "OpenAI API key not found. Please set it in your environment variables or .env file."
|
242 |
+
return True, "API key validated successfully."
|
243 |
+
|
244 |
+
def get_dataset_summary(rag_systems):
|
245 |
+
"""Generate a summary of all loaded datasets."""
|
246 |
+
if not rag_systems:
|
247 |
+
return "No datasets currently loaded."
|
248 |
+
|
249 |
+
summary_lines = ["### Currently Loaded Datasets:\n"]
|
250 |
+
|
251 |
+
for i, (key, system) in enumerate(rag_systems.items(), 1):
|
252 |
+
meta = system['metadata']
|
253 |
+
summary_lines.append(
|
254 |
+
f"{i}. **{meta['dataset_version']}** - "
|
255 |
+
f"State: {meta['state_filter']} - "
|
256 |
+
f"Records: {meta['record_count']} - "
|
257 |
+
f"Chunks: {meta['chunk_count']}"
|
258 |
+
)
|
259 |
+
|
260 |
+
if key == current_dataset_key:
|
261 |
+
summary_lines[-1] += " *(Current)*"
|
262 |
+
|
263 |
+
summary_lines.append(f"\n**Total datasets loaded:** {len(rag_systems)}")
|
264 |
+
|
265 |
+
return "\n".join(summary_lines)
|
266 |
+
|
267 |
+
def format_state_options():
|
268 |
+
"""Format state options for Gradio dropdown."""
|
269 |
+
options = []
|
270 |
+
for code in US_STATES:
|
271 |
+
if code == "":
|
272 |
+
options.append(("All States", ""))
|
273 |
+
else:
|
274 |
+
options.append((f"{STATE_NAMES[code]} ({code})", code))
|
275 |
+
return options
|
276 |
+
|
277 |
+
def load_dataset_gradio(version, state_filter, max_records, use_sample):
|
278 |
+
"""Load data from CMS API and set up the RAG system - Gradio version."""
|
279 |
+
global rag_systems, current_dataset_key
|
280 |
+
|
281 |
+
# Validate API key first
|
282 |
+
valid, message = validate_api_key()
|
283 |
+
if not valid:
|
284 |
+
return message, get_dataset_summary(rag_systems)
|
285 |
+
|
286 |
+
# Generate a unique key for this dataset
|
287 |
+
dataset_key = f"{version}_{state_filter}_{max_records}"
|
288 |
+
|
289 |
+
# Check if dataset already loaded
|
290 |
+
if dataset_key in rag_systems:
|
291 |
+
current_dataset_key = dataset_key
|
292 |
+
return f"β
Dataset already loaded and set as current: {version} - {STATE_NAMES.get(state_filter, 'All States')}", get_dataset_summary(rag_systems)
|
293 |
+
|
294 |
+
# Get version ID
|
295 |
+
version_id = DATASET_VERSIONS.get(version)
|
296 |
+
if not version_id:
|
297 |
+
return f"β Invalid version: {version}", get_dataset_summary(rag_systems)
|
298 |
+
|
299 |
+
# Adjust max records if sample
|
300 |
+
actual_max = INITIAL_SAMPLE_SIZE if use_sample else max_records
|
301 |
+
|
302 |
+
# Status message
|
303 |
+
status_msg = f"π Loading {version} data"
|
304 |
+
if state_filter:
|
305 |
+
status_msg += f" for {STATE_NAMES.get(state_filter, state_filter)}"
|
306 |
+
status_msg += f" (max {actual_max} records)..."
|
307 |
+
|
308 |
+
try:
|
309 |
+
# Fetch data from API
|
310 |
+
records, api_message = query_cms_api(version_id, state_filter, actual_max)
|
311 |
+
|
312 |
+
if not records:
|
313 |
+
return f"β Failed to load data: {api_message}", get_dataset_summary(rag_systems)
|
314 |
+
|
315 |
+
status_msg += f"\nβ
{api_message}"
|
316 |
+
|
317 |
+
# Process records and create vector store
|
318 |
+
status_msg += "\nπ Processing records and creating vector store..."
|
319 |
+
vector_store, doc_count, chunk_count = process_records(records, version)
|
320 |
+
|
321 |
+
# Set up RAG system
|
322 |
+
llm = ChatOpenAI(temperature=0.7, model_name=DEFAULT_MODEL)
|
323 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
324 |
+
retriever = vector_store.as_retriever()
|
325 |
+
|
326 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
327 |
+
llm=llm,
|
328 |
+
retriever=retriever,
|
329 |
+
memory=memory
|
330 |
+
)
|
331 |
+
|
332 |
+
# Store in the dictionary
|
333 |
+
rag_systems[dataset_key] = {
|
334 |
+
'vector_store': vector_store,
|
335 |
+
'conversation_chain': conversation_chain,
|
336 |
+
'metadata': {
|
337 |
+
'dataset_version': version,
|
338 |
+
'version_id': version_id,
|
339 |
+
'state_filter': STATE_NAMES.get(state_filter, "All States") if state_filter else "All States",
|
340 |
+
'record_count': len(records),
|
341 |
+
'document_count': doc_count,
|
342 |
+
'chunk_count': chunk_count,
|
343 |
+
'loaded_at': datetime.now().isoformat()
|
344 |
+
}
|
345 |
+
}
|
346 |
+
|
347 |
+
# Set as current dataset
|
348 |
+
current_dataset_key = dataset_key
|
349 |
+
|
350 |
+
success_msg = f"β
Successfully loaded {version} - {STATE_NAMES.get(state_filter, 'All States')}\n"
|
351 |
+
success_msg += f"π Created {chunk_count} chunks from {len(records)} records"
|
352 |
+
|
353 |
+
return success_msg, get_dataset_summary(rag_systems)
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
error_msg = f"β Error loading data: {str(e)}"
|
357 |
+
return error_msg, get_dataset_summary(rag_systems)
|
358 |
+
|
359 |
+
def switch_dataset_gradio(dataset_index):
|
360 |
+
"""Switch to a different dataset - Gradio version."""
|
361 |
+
global rag_systems, current_dataset_key
|
362 |
+
|
363 |
+
if not rag_systems:
|
364 |
+
return "β No datasets loaded.", get_dataset_summary(rag_systems)
|
365 |
+
|
366 |
+
if not dataset_index:
|
367 |
+
return "β Please select a dataset.", get_dataset_summary(rag_systems)
|
368 |
+
|
369 |
+
try:
|
370 |
+
# Parse the index from the selection (format: "1. Dataset Name")
|
371 |
+
index = int(dataset_index.split(".")[0])
|
372 |
+
|
373 |
+
if 1 <= index <= len(rag_systems):
|
374 |
+
key = list(rag_systems.keys())[index - 1]
|
375 |
+
current_dataset_key = key
|
376 |
+
meta = rag_systems[key]['metadata']
|
377 |
+
return f"β
Switched to: {meta['dataset_version']} - {meta['state_filter']}", get_dataset_summary(rag_systems)
|
378 |
+
else:
|
379 |
+
return f"β Invalid selection.", get_dataset_summary(rag_systems)
|
380 |
+
except:
|
381 |
+
return "β Invalid selection format.", get_dataset_summary(rag_systems)
|
382 |
+
|
383 |
+
def remove_dataset_gradio(dataset_index):
|
384 |
+
"""Remove a dataset from memory - Gradio version."""
|
385 |
+
global rag_systems, current_dataset_key
|
386 |
+
|
387 |
+
if not rag_systems:
|
388 |
+
return "β No datasets loaded.", get_dataset_summary(rag_systems)
|
389 |
+
|
390 |
+
if not dataset_index:
|
391 |
+
return "β Please select a dataset to remove.", get_dataset_summary(rag_systems)
|
392 |
+
|
393 |
+
try:
|
394 |
+
# Parse the index from the selection
|
395 |
+
index = int(dataset_index.split(".")[0])
|
396 |
+
|
397 |
+
if 1 <= index <= len(rag_systems):
|
398 |
+
key = list(rag_systems.keys())[index - 1]
|
399 |
+
meta = rag_systems[key]['metadata']
|
400 |
+
|
401 |
+
# Remove the dataset
|
402 |
+
del rag_systems[key]
|
403 |
+
|
404 |
+
# If this was the current dataset, clear the current key
|
405 |
+
if key == current_dataset_key:
|
406 |
+
current_dataset_key = None
|
407 |
+
# Set another dataset as current if available
|
408 |
+
if rag_systems:
|
409 |
+
current_dataset_key = list(rag_systems.keys())[0]
|
410 |
+
|
411 |
+
return f"β
Removed: {meta['dataset_version']} - {meta['state_filter']}", get_dataset_summary(rag_systems)
|
412 |
+
else:
|
413 |
+
return f"β Invalid selection.", get_dataset_summary(rag_systems)
|
414 |
+
except Exception as e:
|
415 |
+
return f"β Error removing dataset: {str(e)}", get_dataset_summary(rag_systems)
|
416 |
+
|
417 |
+
def get_dataset_choices():
|
418 |
+
"""Get formatted dataset choices for Gradio dropdown."""
|
419 |
+
if not rag_systems:
|
420 |
+
return []
|
421 |
+
|
422 |
+
choices = []
|
423 |
+
for i, (key, system) in enumerate(rag_systems.items(), 1):
|
424 |
+
meta = system['metadata']
|
425 |
+
choice_text = f"{i}. {meta['dataset_version']} - {meta['state_filter']} ({meta['record_count']} records)"
|
426 |
+
if key == current_dataset_key:
|
427 |
+
choice_text += " [CURRENT]"
|
428 |
+
choices.append(choice_text)
|
429 |
+
|
430 |
+
return choices
|
431 |
+
|
432 |
+
def clear_all_datasets_gradio():
|
433 |
+
"""Clear all loaded datasets - Gradio version."""
|
434 |
+
global rag_systems, current_dataset_key
|
435 |
+
|
436 |
+
if not rag_systems:
|
437 |
+
return "βΉοΈ No datasets to clear.", ""
|
438 |
+
|
439 |
+
count = len(rag_systems)
|
440 |
+
rag_systems.clear()
|
441 |
+
current_dataset_key = None
|
442 |
+
|
443 |
+
return f"β
Cleared {count} dataset(s) from memory.", ""
|
444 |
+
|
445 |
+
def get_current_dataset_info():
|
446 |
+
"""Get information about the current dataset."""
|
447 |
+
global rag_systems, current_dataset_key
|
448 |
+
|
449 |
+
if not current_dataset_key or current_dataset_key not in rag_systems:
|
450 |
+
return "No dataset currently selected."
|
451 |
+
|
452 |
+
meta = rag_systems[current_dataset_key]['metadata']
|
453 |
+
info = f"**Current Dataset:** {meta['dataset_version']} - {meta['state_filter']}\n"
|
454 |
+
info += f"- Records: {meta['record_count']}\n"
|
455 |
+
info += f"- Chunks: {meta['chunk_count']}\n"
|
456 |
+
info += f"- Loaded: {meta['loaded_at'][:19]}"
|
457 |
+
|
458 |
+
return info
|
459 |
+
|
460 |
+
def ask_question_gradio(question, chat_history):
|
461 |
+
"""Ask a question to the current dataset - Gradio version."""
|
462 |
+
global rag_systems, current_dataset_key
|
463 |
+
|
464 |
+
if not current_dataset_key or current_dataset_key not in rag_systems:
|
465 |
+
response = "β No dataset selected. Please load a dataset first."
|
466 |
+
chat_history.append((question, response))
|
467 |
+
return "", chat_history
|
468 |
+
|
469 |
+
# Get the dataset
|
470 |
+
system = rag_systems[current_dataset_key]
|
471 |
+
meta = system['metadata']
|
472 |
+
|
473 |
+
try:
|
474 |
+
# Use the chain to get a response
|
475 |
+
result = system['conversation_chain'].invoke({"question": question})
|
476 |
+
answer = result["answer"]
|
477 |
+
|
478 |
+
# Add dataset source information
|
479 |
+
answer += f"\n\n*Source: {meta['dataset_version']} - {meta['state_filter']} ({meta['record_count']} records)*"
|
480 |
+
|
481 |
+
# Update chat history
|
482 |
+
chat_history.append((question, answer))
|
483 |
+
|
484 |
+
return "", chat_history
|
485 |
+
|
486 |
+
except Exception as e:
|
487 |
+
error_response = f"β Error processing query: {str(e)}"
|
488 |
+
chat_history.append((question, error_response))
|
489 |
+
return "", chat_history
|
490 |
+
|
491 |
+
def ask_global_question_gradio(question, chat_history):
|
492 |
+
"""Ask a question that might require knowledge from all loaded datasets."""
|
493 |
+
global rag_systems
|
494 |
+
|
495 |
+
if not rag_systems:
|
496 |
+
response = "β No datasets loaded. Please load datasets first."
|
497 |
+
chat_history.append((question, response))
|
498 |
+
return "", chat_history
|
499 |
+
|
500 |
+
# Check if this is a global question about the datasets themselves
|
501 |
+
global_keywords = ['how many', 'which years', 'what years', 'what quarters', 'how many years',
|
502 |
+
'which quarters', 'time period', 'date range', 'all datasets', 'datasets',
|
503 |
+
'compare', 'comparison', 'difference', 'trend', 'over time']
|
504 |
+
|
505 |
+
is_global_question = any(keyword in question.lower() for keyword in global_keywords)
|
506 |
+
|
507 |
+
# Check if the question mentions a specific state
|
508 |
+
mentioned_state = None
|
509 |
+
question_lower = question.lower()
|
510 |
+
|
511 |
+
# Check for state names
|
512 |
+
for code, name in STATE_NAMES.items():
|
513 |
+
if code and (code.lower() in question_lower or name.lower() in question_lower):
|
514 |
+
mentioned_state = code
|
515 |
+
break
|
516 |
+
|
517 |
+
try:
|
518 |
+
if mentioned_state and not is_global_question:
|
519 |
+
# Find all datasets for that state
|
520 |
+
suitable_datasets = []
|
521 |
+
|
522 |
+
for key, system in rag_systems.items():
|
523 |
+
meta = system['metadata']
|
524 |
+
state_filter = meta['state_filter']
|
525 |
+
|
526 |
+
# Check if this dataset matches the mentioned state
|
527 |
+
if mentioned_state in state_filter or STATE_NAMES[mentioned_state] in state_filter:
|
528 |
+
suitable_datasets.append(key)
|
529 |
+
|
530 |
+
if suitable_datasets:
|
531 |
+
response = f"π Found {len(suitable_datasets)} dataset(s) for {STATE_NAMES[mentioned_state]}:\n\n"
|
532 |
+
|
533 |
+
# Query each suitable dataset
|
534 |
+
all_results = []
|
535 |
+
for dataset_key in suitable_datasets:
|
536 |
+
system = rag_systems[dataset_key]
|
537 |
+
meta = system['metadata']
|
538 |
+
|
539 |
+
try:
|
540 |
+
result = system['conversation_chain'].invoke({"question": question})
|
541 |
+
answer = result["answer"]
|
542 |
+
all_results.append({
|
543 |
+
'dataset': f"{meta['dataset_version']} - {meta['state_filter']}",
|
544 |
+
'answer': answer
|
545 |
+
})
|
546 |
+
except Exception as e:
|
547 |
+
all_results.append({
|
548 |
+
'dataset': f"{meta['dataset_version']} - {meta['state_filter']}",
|
549 |
+
'answer': f"Error: {str(e)}"
|
550 |
+
})
|
551 |
+
|
552 |
+
# Format combined response
|
553 |
+
for result in all_results:
|
554 |
+
response += f"**{result['dataset']}**\n{result['answer']}\n\n---\n\n"
|
555 |
+
|
556 |
+
chat_history.append((question, response))
|
557 |
+
return "", chat_history
|
558 |
+
else:
|
559 |
+
response = f"βΉοΈ No datasets found for {STATE_NAMES[mentioned_state]}. Please load data for this state first."
|
560 |
+
chat_history.append((question, response))
|
561 |
+
return "", chat_history
|
562 |
+
|
563 |
+
elif is_global_question:
|
564 |
+
# Create a summary of all available datasets
|
565 |
+
dataset_summary = generate_dataset_metadata_summary()
|
566 |
+
|
567 |
+
# Create a system message that includes this metadata
|
568 |
+
llm = ChatOpenAI(temperature=0.7, model_name=DEFAULT_MODEL)
|
569 |
+
|
570 |
+
system_message = f"""You are an expert on Medicare Provider data. You have access to multiple datasets spanning different quarters and years.
|
571 |
+
|
572 |
+
{dataset_summary}
|
573 |
+
|
574 |
+
When answering questions, consider the metadata about all available datasets. For questions about time periods, years, quarters, or trends, use the information about which datasets are loaded."""
|
575 |
+
|
576 |
+
messages = [
|
577 |
+
{"role": "system", "content": system_message},
|
578 |
+
{"role": "user", "content": question}
|
579 |
+
]
|
580 |
+
|
581 |
+
response = llm.invoke(messages)
|
582 |
+
answer = response.content
|
583 |
+
|
584 |
+
chat_history.append((question, answer))
|
585 |
+
return "", chat_history
|
586 |
+
|
587 |
+
else:
|
588 |
+
# For non-global questions without specific state mention, use the current dataset
|
589 |
+
return ask_question_gradio(question, chat_history)
|
590 |
+
|
591 |
+
except Exception as e:
|
592 |
+
error_response = f"β Error processing global query: {str(e)}"
|
593 |
+
chat_history.append((question, error_response))
|
594 |
+
return "", chat_history
|
595 |
+
|
596 |
+
def generate_dataset_metadata_summary():
|
597 |
+
"""Generate a detailed summary of dataset metadata."""
|
598 |
+
if not rag_systems:
|
599 |
+
return "No datasets loaded."
|
600 |
+
|
601 |
+
summary = "# Available Datasets\n\n"
|
602 |
+
summary += "The following datasets are currently loaded:\n\n"
|
603 |
+
|
604 |
+
# Group by year
|
605 |
+
years = set()
|
606 |
+
quarters_by_year = {}
|
607 |
+
states = set()
|
608 |
+
|
609 |
+
for key, system in rag_systems.items():
|
610 |
+
meta = system['metadata']
|
611 |
+
version = meta['dataset_version']
|
612 |
+
state = meta['state_filter']
|
613 |
+
|
614 |
+
# Extract year from version (e.g., "Q1 2025" -> "2025")
|
615 |
+
if ' ' in version:
|
616 |
+
year = version.split(' ')[1]
|
617 |
+
quarter = version.split(' ')[0]
|
618 |
+
|
619 |
+
years.add(year)
|
620 |
+
states.add(state)
|
621 |
+
|
622 |
+
if year not in quarters_by_year:
|
623 |
+
quarters_by_year[year] = set()
|
624 |
+
|
625 |
+
quarters_by_year[year].add(quarter)
|
626 |
+
|
627 |
+
# Format the summary
|
628 |
+
summary += "## Years Available\n"
|
629 |
+
summary += ", ".join(sorted(list(years))) + "\n\n"
|
630 |
+
|
631 |
+
summary += "## Quarters Available by Year\n"
|
632 |
+
for year in sorted(quarters_by_year.keys()):
|
633 |
+
summary += f"- {year}: {', '.join(sorted(list(quarters_by_year[year])))}\n"
|
634 |
+
|
635 |
+
summary += "\n## States Available\n"
|
636 |
+
summary += ", ".join(sorted(list(states))) + "\n\n"
|
637 |
+
|
638 |
+
summary += "## Full Dataset List\n"
|
639 |
+
for key, system in rag_systems.items():
|
640 |
+
meta = system['metadata']
|
641 |
+
summary += f"- {meta['dataset_version']} - {meta['state_filter']} ({meta['record_count']} records)\n"
|
642 |
+
|
643 |
+
return summary
|
644 |
+
|
645 |
+
def compare_datasets_gradio(question, dataset_indices):
|
646 |
+
"""Compare multiple datasets by asking the same question - Gradio version."""
|
647 |
+
global rag_systems
|
648 |
+
|
649 |
+
if not rag_systems:
|
650 |
+
return "β No datasets loaded. Please load datasets first."
|
651 |
+
|
652 |
+
if not dataset_indices or len(dataset_indices) < 2:
|
653 |
+
return "β Please select at least 2 datasets to compare."
|
654 |
+
|
655 |
+
# Parse indices and get dataset keys
|
656 |
+
selected_keys = []
|
657 |
+
for selection in dataset_indices:
|
658 |
+
try:
|
659 |
+
index = int(selection.split(".")[0])
|
660 |
+
if 1 <= index <= len(rag_systems):
|
661 |
+
key = list(rag_systems.keys())[index - 1]
|
662 |
+
selected_keys.append(key)
|
663 |
+
except:
|
664 |
+
continue
|
665 |
+
|
666 |
+
if len(selected_keys) < 2:
|
667 |
+
return "β Could not parse selected datasets."
|
668 |
+
|
669 |
+
comparison_result = f"# Comparison: {question}\n\n"
|
670 |
+
|
671 |
+
# Query each selected dataset
|
672 |
+
for key in selected_keys:
|
673 |
+
system = rag_systems[key]
|
674 |
+
meta = system['metadata']
|
675 |
+
dataset_name = f"{meta['dataset_version']} - {meta['state_filter']}"
|
676 |
+
|
677 |
+
comparison_result += f"## {dataset_name}\n\n"
|
678 |
+
|
679 |
+
try:
|
680 |
+
result = system['conversation_chain'].invoke({"question": question})
|
681 |
+
answer = result["answer"]
|
682 |
+
comparison_result += f"{answer}\n\n"
|
683 |
+
except Exception as e:
|
684 |
+
comparison_result += f"Error: {str(e)}\n\n"
|
685 |
+
|
686 |
+
comparison_result += "---\n\n"
|
687 |
+
|
688 |
+
return comparison_result
|
689 |
+
|
690 |
+
def analyze_provider_types_gradio(dataset_key=None):
|
691 |
+
"""Analyze provider types in a dataset - Gradio version."""
|
692 |
+
global rag_systems, current_dataset_key
|
693 |
+
|
694 |
+
# Determine which dataset to use
|
695 |
+
target_key = dataset_key if dataset_key and dataset_key in rag_systems else current_dataset_key
|
696 |
+
|
697 |
+
if not target_key or target_key not in rag_systems:
|
698 |
+
return "β No dataset selected."
|
699 |
+
|
700 |
+
system = rag_systems[target_key]
|
701 |
+
meta = system['metadata']
|
702 |
+
|
703 |
+
analysis_question = """
|
704 |
+
Analyze the provider types in this dataset:
|
705 |
+
1. What are the most common provider types?
|
706 |
+
2. How many unique provider types are there?
|
707 |
+
3. What percentage of providers fall into each major category?
|
708 |
+
Please provide a detailed breakdown.
|
709 |
+
"""
|
710 |
+
|
711 |
+
try:
|
712 |
+
result = system['conversation_chain'].invoke({"question": analysis_question})
|
713 |
+
|
714 |
+
analysis = f"# Provider Type Analysis\n"
|
715 |
+
analysis += f"**Dataset:** {meta['dataset_version']} - {meta['state_filter']}\n\n"
|
716 |
+
analysis += result["answer"]
|
717 |
+
|
718 |
+
return analysis
|
719 |
+
except Exception as e:
|
720 |
+
return f"β Error analyzing provider types: {str(e)}"
|
721 |
+
|
722 |
+
def clear_chat_history():
|
723 |
+
"""Clear the chat history."""
|
724 |
+
return []
|
725 |
+
|
726 |
+
def visualize_datasets_gradio(dataset_indices, dimensions, sample_size=1000):
|
727 |
+
"""Create a visualization of one or more datasets - Gradio version."""
|
728 |
+
global rag_systems
|
729 |
+
|
730 |
+
if not rag_systems:
|
731 |
+
return None, "β No datasets loaded. Please load datasets first."
|
732 |
+
|
733 |
+
if not dataset_indices:
|
734 |
+
return None, "β Please select at least one dataset to visualize."
|
735 |
+
|
736 |
+
# Parse indices and get dataset keys
|
737 |
+
selected_keys = []
|
738 |
+
for selection in dataset_indices:
|
739 |
+
try:
|
740 |
+
index = int(selection.split(".")[0])
|
741 |
+
if 1 <= index <= len(rag_systems):
|
742 |
+
key = list(rag_systems.keys())[index - 1]
|
743 |
+
selected_keys.append(key)
|
744 |
+
except:
|
745 |
+
continue
|
746 |
+
|
747 |
+
if not selected_keys:
|
748 |
+
return None, "β Could not parse selected datasets."
|
749 |
+
|
750 |
+
try:
|
751 |
+
# Create a combined visualization
|
752 |
+
all_vectors = []
|
753 |
+
all_metadata = []
|
754 |
+
all_contents = []
|
755 |
+
all_dataset_labels = []
|
756 |
+
|
757 |
+
status_msg = f"Processing {len(selected_keys)} dataset(s)...\n"
|
758 |
+
|
759 |
+
# Collect vectors from all requested datasets
|
760 |
+
for key in selected_keys:
|
761 |
+
vector_store = rag_systems[key]['vector_store']
|
762 |
+
meta = rag_systems[key]['metadata']
|
763 |
+
dataset_label = f"{meta['dataset_version']} - {meta['state_filter']}"
|
764 |
+
|
765 |
+
# Limit vectors for performance
|
766 |
+
num_vectors = min(sample_size, vector_store.index.ntotal)
|
767 |
+
status_msg += f"- {dataset_label}: {num_vectors} vectors\n"
|
768 |
+
|
769 |
+
for i in range(num_vectors):
|
770 |
+
all_vectors.append(vector_store.index.reconstruct(i))
|
771 |
+
|
772 |
+
doc_id = vector_store.index_to_docstore_id[i]
|
773 |
+
document = vector_store.docstore.search(doc_id)
|
774 |
+
|
775 |
+
all_metadata.append(document.metadata)
|
776 |
+
all_contents.append(document.page_content)
|
777 |
+
all_dataset_labels.append(dataset_label)
|
778 |
+
|
779 |
+
if not all_vectors:
|
780 |
+
return None, "β No vectors to visualize."
|
781 |
+
|
782 |
+
vectors = np.array(all_vectors)
|
783 |
+
status_msg += f"\nTotal vectors: {len(all_vectors)}\n"
|
784 |
+
|
785 |
+
# Reduce dimensionality
|
786 |
+
status_msg += f"Reducing dimensionality to {dimensions}D using t-SNE..."
|
787 |
+
tsne = TSNE(n_components=dimensions, random_state=42, perplexity=min(30, len(all_vectors)-1))
|
788 |
+
reduced_vectors = tsne.fit_transform(vectors)
|
789 |
+
|
790 |
+
# Create color mapping based on dataset
|
791 |
+
unique_labels = list(set(all_dataset_labels))
|
792 |
+
colors = []
|
793 |
+
color_palette = [
|
794 |
+
'#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
|
795 |
+
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'
|
796 |
+
]
|
797 |
+
color_map = {label: color_palette[i % len(color_palette)]
|
798 |
+
for i, label in enumerate(unique_labels)}
|
799 |
+
|
800 |
+
colors = [color_map[label] for label in all_dataset_labels]
|
801 |
+
|
802 |
+
# Create hover text
|
803 |
+
hover_texts = []
|
804 |
+
for meta, content, label in zip(all_metadata, all_contents, all_dataset_labels):
|
805 |
+
text = f"<b>Dataset:</b> {label}<br>"
|
806 |
+
|
807 |
+
# Add key metadata fields
|
808 |
+
key_fields = ['STATE_CD', 'PROVIDER_TYPE_DESC', 'FIRST_NAME', 'LAST_NAME', 'ORG_NAME']
|
809 |
+
for field in key_fields:
|
810 |
+
if field in meta and meta[field]:
|
811 |
+
text += f"<b>{field}:</b> {meta[field]}<br>"
|
812 |
+
|
813 |
+
# Add a preview of the content
|
814 |
+
content_preview = content[:200] + "..." if len(content) > 200 else content
|
815 |
+
text += f"<br><b>Preview:</b> {content_preview}"
|
816 |
+
|
817 |
+
hover_texts.append(text)
|
818 |
+
|
819 |
+
# Create visualization
|
820 |
+
if dimensions == 2:
|
821 |
+
fig = go.Figure()
|
822 |
+
|
823 |
+
# Add a trace for each dataset
|
824 |
+
for label in unique_labels:
|
825 |
+
# Get indices for this dataset
|
826 |
+
indices = [i for i, l in enumerate(all_dataset_labels) if l == label]
|
827 |
+
|
828 |
+
# Add the scatter trace
|
829 |
+
fig.add_trace(go.Scatter(
|
830 |
+
x=reduced_vectors[indices, 0],
|
831 |
+
y=reduced_vectors[indices, 1],
|
832 |
+
mode='markers',
|
833 |
+
marker=dict(
|
834 |
+
size=6,
|
835 |
+
color=color_map[label],
|
836 |
+
opacity=0.7,
|
837 |
+
line=dict(width=1, color='white')
|
838 |
+
),
|
839 |
+
text=[hover_texts[i] for i in indices],
|
840 |
+
hoverinfo='text',
|
841 |
+
hoverlabel=dict(bgcolor="white", font_size=12),
|
842 |
+
name=label
|
843 |
+
))
|
844 |
+
|
845 |
+
fig.update_layout(
|
846 |
+
title={
|
847 |
+
'text': 'Medicare Provider Data - 2D Vector Space Visualization',
|
848 |
+
'font': {'size': 20}
|
849 |
+
},
|
850 |
+
xaxis_title='Dimension 1',
|
851 |
+
yaxis_title='Dimension 2',
|
852 |
+
width=900,
|
853 |
+
height=700,
|
854 |
+
hovermode='closest',
|
855 |
+
template='plotly_white',
|
856 |
+
legend=dict(
|
857 |
+
yanchor="top",
|
858 |
+
y=0.99,
|
859 |
+
xanchor="left",
|
860 |
+
x=0.01,
|
861 |
+
bgcolor="rgba(255,255,255,0.8)"
|
862 |
+
)
|
863 |
+
)
|
864 |
+
else: # 3D
|
865 |
+
fig = go.Figure()
|
866 |
+
|
867 |
+
# Add a trace for each dataset
|
868 |
+
for label in unique_labels:
|
869 |
+
# Get indices for this dataset
|
870 |
+
indices = [i for i, l in enumerate(all_dataset_labels) if l == label]
|
871 |
+
|
872 |
+
# Add the scatter trace
|
873 |
+
fig.add_trace(go.Scatter3d(
|
874 |
+
x=reduced_vectors[indices, 0],
|
875 |
+
y=reduced_vectors[indices, 1],
|
876 |
+
z=reduced_vectors[indices, 2],
|
877 |
+
mode='markers',
|
878 |
+
marker=dict(
|
879 |
+
size=5,
|
880 |
+
color=color_map[label],
|
881 |
+
opacity=0.7,
|
882 |
+
line=dict(width=1, color='white')
|
883 |
+
),
|
884 |
+
text=[hover_texts[i] for i in indices],
|
885 |
+
hoverinfo='text',
|
886 |
+
hoverlabel=dict(bgcolor="white", font_size=12),
|
887 |
+
name=label
|
888 |
+
))
|
889 |
+
|
890 |
+
fig.update_layout(
|
891 |
+
title={
|
892 |
+
'text': 'Medicare Provider Data - 3D Vector Space Visualization',
|
893 |
+
'font': {'size': 20}
|
894 |
+
},
|
895 |
+
scene=dict(
|
896 |
+
xaxis_title='Dimension 1',
|
897 |
+
yaxis_title='Dimension 2',
|
898 |
+
zaxis_title='Dimension 3',
|
899 |
+
camera=dict(
|
900 |
+
eye=dict(x=1.5, y=1.5, z=1.5)
|
901 |
+
)
|
902 |
+
),
|
903 |
+
width=900,
|
904 |
+
height=700,
|
905 |
+
template='plotly_white',
|
906 |
+
legend=dict(
|
907 |
+
yanchor="top",
|
908 |
+
y=0.99,
|
909 |
+
xanchor="left",
|
910 |
+
x=0.01,
|
911 |
+
bgcolor="rgba(255,255,255,0.8)"
|
912 |
+
)
|
913 |
+
)
|
914 |
+
|
915 |
+
success_msg = f"β
Successfully created {dimensions}D visualization with {len(all_vectors)} vectors from {len(selected_keys)} dataset(s)"
|
916 |
+
return fig, success_msg
|
917 |
+
|
918 |
+
except Exception as e:
|
919 |
+
return None, f"β Error creating visualization: {str(e)}"
|
920 |
+
|
921 |
+
def create_dataset_statistics_plot(dataset_indices):
|
922 |
+
"""Create statistical plots for selected datasets."""
|
923 |
+
global rag_systems
|
924 |
+
|
925 |
+
if not rag_systems:
|
926 |
+
return None, "β No datasets loaded."
|
927 |
+
|
928 |
+
if not dataset_indices:
|
929 |
+
return None, "β Please select at least one dataset."
|
930 |
+
|
931 |
+
# Parse indices and get dataset keys
|
932 |
+
selected_keys = []
|
933 |
+
for selection in dataset_indices:
|
934 |
+
try:
|
935 |
+
index = int(selection.split(".")[0])
|
936 |
+
if 1 <= index <= len(rag_systems):
|
937 |
+
key = list(rag_systems.keys())[index - 1]
|
938 |
+
selected_keys.append(key)
|
939 |
+
except:
|
940 |
+
continue
|
941 |
+
|
942 |
+
if not selected_keys:
|
943 |
+
return None, "β Could not parse selected datasets."
|
944 |
+
|
945 |
+
try:
|
946 |
+
# Collect statistics
|
947 |
+
dataset_names = []
|
948 |
+
record_counts = []
|
949 |
+
chunk_counts = []
|
950 |
+
|
951 |
+
for key in selected_keys:
|
952 |
+
meta = rag_systems[key]['metadata']
|
953 |
+
dataset_names.append(f"{meta['dataset_version']}<br>{meta['state_filter']}")
|
954 |
+
record_counts.append(meta['record_count'])
|
955 |
+
chunk_counts.append(meta['chunk_count'])
|
956 |
+
|
957 |
+
# Create subplots
|
958 |
+
from plotly.subplots import make_subplots
|
959 |
+
|
960 |
+
fig = make_subplots(
|
961 |
+
rows=1, cols=2,
|
962 |
+
subplot_titles=('Records per Dataset', 'Chunks per Dataset'),
|
963 |
+
specs=[[{'type': 'bar'}, {'type': 'bar'}]]
|
964 |
+
)
|
965 |
+
|
966 |
+
# Add record count bars
|
967 |
+
fig.add_trace(
|
968 |
+
go.Bar(
|
969 |
+
x=dataset_names,
|
970 |
+
y=record_counts,
|
971 |
+
name='Records',
|
972 |
+
marker_color='lightblue',
|
973 |
+
text=record_counts,
|
974 |
+
textposition='auto',
|
975 |
+
),
|
976 |
+
row=1, col=1
|
977 |
+
)
|
978 |
+
|
979 |
+
# Add chunk count bars
|
980 |
+
fig.add_trace(
|
981 |
+
go.Bar(
|
982 |
+
x=dataset_names,
|
983 |
+
y=chunk_counts,
|
984 |
+
name='Chunks',
|
985 |
+
marker_color='lightgreen',
|
986 |
+
text=chunk_counts,
|
987 |
+
textposition='auto',
|
988 |
+
),
|
989 |
+
row=1, col=2
|
990 |
+
)
|
991 |
+
|
992 |
+
fig.update_layout(
|
993 |
+
title={
|
994 |
+
'text': 'Dataset Statistics Overview',
|
995 |
+
'font': {'size': 20}
|
996 |
+
},
|
997 |
+
showlegend=False,
|
998 |
+
height=500,
|
999 |
+
template='plotly_white'
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
fig.update_xaxes(tickangle=-45)
|
1003 |
+
|
1004 |
+
return fig, f"β
Created statistics plot for {len(selected_keys)} dataset(s)"
|
1005 |
+
|
1006 |
+
except Exception as e:
|
1007 |
+
return None, f"β Error creating statistics plot: {str(e)}"
|
1008 |
+
|
1009 |
+
def inspect_dataset_gradio(num_samples):
|
1010 |
+
"""Display sample documents from the current dataset - Gradio version."""
|
1011 |
+
global rag_systems, current_dataset_key
|
1012 |
+
|
1013 |
+
if not current_dataset_key or current_dataset_key not in rag_systems:
|
1014 |
+
return "β No dataset selected. Please load a dataset first."
|
1015 |
+
|
1016 |
+
# Get the dataset
|
1017 |
+
system = rag_systems[current_dataset_key]
|
1018 |
+
vector_store = system['vector_store']
|
1019 |
+
meta = system['metadata']
|
1020 |
+
|
1021 |
+
inspection_result = f"# Dataset Inspection\n\n"
|
1022 |
+
inspection_result += f"**Dataset:** {meta['dataset_version']} - {meta['state_filter']}\n"
|
1023 |
+
inspection_result += f"**Total documents:** {vector_store.index.ntotal}\n"
|
1024 |
+
inspection_result += f"**Showing:** {min(num_samples, vector_store.index.ntotal)} sample documents\n\n"
|
1025 |
+
inspection_result += "---\n\n"
|
1026 |
+
|
1027 |
+
for i in range(min(num_samples, vector_store.index.ntotal)):
|
1028 |
+
try:
|
1029 |
+
doc_id = vector_store.index_to_docstore_id[i]
|
1030 |
+
document = vector_store.docstore.search(doc_id)
|
1031 |
+
|
1032 |
+
inspection_result += f"### Document {i+1}\n\n"
|
1033 |
+
inspection_result += "**Metadata:**\n"
|
1034 |
+
|
1035 |
+
# Show key metadata fields
|
1036 |
+
key_fields = ['PROVIDER_TYPE_DESC', 'STATE_CD', 'FIRST_NAME', 'LAST_NAME',
|
1037 |
+
'ORG_NAME', 'NPI', 'ENRLMT_ID']
|
1038 |
+
|
1039 |
+
for field in key_fields:
|
1040 |
+
if field in document.metadata and document.metadata[field]:
|
1041 |
+
inspection_result += f"- **{field}:** {document.metadata[field]}\n"
|
1042 |
+
|
1043 |
+
# Show content preview
|
1044 |
+
content_preview = document.page_content[:500] + "..." if len(document.page_content) > 500 else document.page_content
|
1045 |
+
inspection_result += f"\n**Content Preview:**\n```\n{content_preview}\n```\n\n"
|
1046 |
+
inspection_result += "---\n\n"
|
1047 |
+
|
1048 |
+
except Exception as e:
|
1049 |
+
inspection_result += f"Error retrieving document {i}: {str(e)}\n\n"
|
1050 |
+
|
1051 |
+
return inspection_result
|
1052 |
+
|
1053 |
+
def create_gradio_interface():
|
1054 |
+
"""Create the main Gradio interface."""
|
1055 |
+
|
1056 |
+
with gr.Blocks(theme=theme, title="Medicare Provider Data Analysis System") as app:
|
1057 |
+
# Header
|
1058 |
+
gr.Markdown(
|
1059 |
+
"""
|
1060 |
+
# π₯ Medicare Provider Data Analysis System
|
1061 |
+
|
1062 |
+
This system allows you to load, query, and analyze Medicare provider data using advanced RAG (Retrieval-Augmented Generation) technology.
|
1063 |
+
|
1064 |
+
---
|
1065 |
+
"""
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
# Main tabs
|
1069 |
+
with gr.Tabs() as tabs:
|
1070 |
+
# Tab 1: Dataset Management
|
1071 |
+
with gr.Tab("π Dataset Management"):
|
1072 |
+
with gr.Row():
|
1073 |
+
with gr.Column(scale=1):
|
1074 |
+
gr.Markdown("### Load New Dataset")
|
1075 |
+
|
1076 |
+
version_dropdown = gr.Dropdown(
|
1077 |
+
choices=list(DATASET_VERSIONS.keys()),
|
1078 |
+
label="Select Quarter/Year",
|
1079 |
+
value="Q1 2025"
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
state_dropdown = gr.Dropdown(
|
1083 |
+
choices=format_state_options(),
|
1084 |
+
label="Select State",
|
1085 |
+
value=""
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
max_records_slider = gr.Slider(
|
1089 |
+
minimum=100,
|
1090 |
+
maximum=5000,
|
1091 |
+
value=1000,
|
1092 |
+
step=100,
|
1093 |
+
label="Maximum Records"
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
use_sample_checkbox = gr.Checkbox(
|
1097 |
+
label="Load sample only (100 records)",
|
1098 |
+
value=True
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
load_button = gr.Button("π Load Dataset", variant="primary")
|
1102 |
+
load_output = gr.Textbox(label="Loading Status", lines=3)
|
1103 |
+
|
1104 |
+
with gr.Column(scale=1):
|
1105 |
+
gr.Markdown("### Manage Loaded Datasets")
|
1106 |
+
|
1107 |
+
dataset_summary = gr.Markdown(get_dataset_summary(rag_systems))
|
1108 |
+
|
1109 |
+
with gr.Row():
|
1110 |
+
dataset_selector = gr.Dropdown(
|
1111 |
+
choices=get_dataset_choices(),
|
1112 |
+
label="Select Dataset",
|
1113 |
+
interactive=True
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
with gr.Row():
|
1117 |
+
switch_button = gr.Button("βοΈ Switch Dataset")
|
1118 |
+
remove_button = gr.Button("ποΈ Remove Dataset")
|
1119 |
+
clear_all_button = gr.Button("π§Ή Clear All", variant="stop")
|
1120 |
+
|
1121 |
+
manage_output = gr.Textbox(label="Status", lines=2)
|
1122 |
+
|
1123 |
+
# Wire up dataset management events
|
1124 |
+
def update_dataset_selector():
|
1125 |
+
return gr.update(choices=get_dataset_choices())
|
1126 |
+
|
1127 |
+
load_button.click(
|
1128 |
+
fn=load_dataset_gradio,
|
1129 |
+
inputs=[version_dropdown, state_dropdown, max_records_slider, use_sample_checkbox],
|
1130 |
+
outputs=[load_output, dataset_summary]
|
1131 |
+
).then(
|
1132 |
+
fn=update_dataset_selector,
|
1133 |
+
outputs=dataset_selector
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
switch_button.click(
|
1137 |
+
fn=switch_dataset_gradio,
|
1138 |
+
inputs=dataset_selector,
|
1139 |
+
outputs=[manage_output, dataset_summary]
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
remove_button.click(
|
1143 |
+
fn=remove_dataset_gradio,
|
1144 |
+
inputs=dataset_selector,
|
1145 |
+
outputs=[manage_output, dataset_summary]
|
1146 |
+
).then(
|
1147 |
+
fn=update_dataset_selector,
|
1148 |
+
outputs=dataset_selector
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
clear_all_button.click(
|
1152 |
+
fn=clear_all_datasets_gradio,
|
1153 |
+
outputs=[manage_output, dataset_summary]
|
1154 |
+
).then(
|
1155 |
+
fn=update_dataset_selector,
|
1156 |
+
outputs=dataset_selector
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
# Tab 2: Query Interface
|
1160 |
+
with gr.Tab("π¬ Query & Chat"):
|
1161 |
+
gr.Markdown("### Ask Questions About Your Data")
|
1162 |
+
|
1163 |
+
current_dataset_info = gr.Markdown(get_current_dataset_info())
|
1164 |
+
|
1165 |
+
# Create a timer to update current dataset info
|
1166 |
+
timer = gr.Timer(value=2)
|
1167 |
+
timer.tick(fn=get_current_dataset_info, outputs=current_dataset_info)
|
1168 |
+
|
1169 |
+
with gr.Row():
|
1170 |
+
with gr.Column(scale=3):
|
1171 |
+
chatbot = gr.Chatbot(
|
1172 |
+
label="Conversation",
|
1173 |
+
height=500,
|
1174 |
+
show_copy_button=True
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
with gr.Row():
|
1178 |
+
question_input = gr.Textbox(
|
1179 |
+
label="Your Question",
|
1180 |
+
placeholder="Ask about provider types, locations, statistics, etc.",
|
1181 |
+
lines=2,
|
1182 |
+
scale=4
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
with gr.Column(scale=1):
|
1186 |
+
ask_button = gr.Button("π€ Ask Current Dataset", variant="primary")
|
1187 |
+
global_ask_button = gr.Button("π Ask All Datasets")
|
1188 |
+
clear_chat_button = gr.Button("ποΈ Clear Chat")
|
1189 |
+
|
1190 |
+
with gr.Column(scale=1):
|
1191 |
+
gr.Markdown("### Quick Actions")
|
1192 |
+
|
1193 |
+
analyze_providers_button = gr.Button("π Analyze Provider Types")
|
1194 |
+
|
1195 |
+
gr.Markdown("### Example Questions")
|
1196 |
+
example_questions = [
|
1197 |
+
"What are the most common provider types?",
|
1198 |
+
"How many providers are in this dataset?",
|
1199 |
+
"Show me all psychiatrists in the data",
|
1200 |
+
"What types of medical facilities are included?",
|
1201 |
+
"Compare provider counts across different quarters"
|
1202 |
+
]
|
1203 |
+
|
1204 |
+
for eq in example_questions:
|
1205 |
+
gr.Button(eq, size="sm").click(
|
1206 |
+
lambda q=eq: (q, gr.update()),
|
1207 |
+
outputs=[question_input, chatbot]
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
# Wire up query events
|
1211 |
+
question_input.submit(
|
1212 |
+
fn=ask_question_gradio,
|
1213 |
+
inputs=[question_input, chatbot],
|
1214 |
+
outputs=[question_input, chatbot]
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
ask_button.click(
|
1218 |
+
fn=ask_question_gradio,
|
1219 |
+
inputs=[question_input, chatbot],
|
1220 |
+
outputs=[question_input, chatbot]
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
global_ask_button.click(
|
1224 |
+
fn=ask_global_question_gradio,
|
1225 |
+
inputs=[question_input, chatbot],
|
1226 |
+
outputs=[question_input, chatbot]
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
clear_chat_button.click(
|
1230 |
+
fn=clear_chat_history,
|
1231 |
+
outputs=chatbot
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
analyze_providers_button.click(
|
1235 |
+
fn=lambda: ("", [(
|
1236 |
+
"Analyze provider types in the current dataset",
|
1237 |
+
analyze_provider_types_gradio()
|
1238 |
+
)]),
|
1239 |
+
outputs=[question_input, chatbot]
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
# Tab 3: Comparison & Analysis
|
1243 |
+
with gr.Tab("π Compare Datasets"):
|
1244 |
+
gr.Markdown("### Compare Multiple Datasets")
|
1245 |
+
|
1246 |
+
with gr.Row():
|
1247 |
+
compare_dataset_selector = gr.CheckboxGroup(
|
1248 |
+
choices=get_dataset_choices(),
|
1249 |
+
label="Select Datasets to Compare (choose 2 or more)",
|
1250 |
+
value=[]
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
compare_question = gr.Textbox(
|
1254 |
+
label="Comparison Question",
|
1255 |
+
placeholder="Enter a question to ask all selected datasets",
|
1256 |
+
lines=2
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
compare_button = gr.Button("π Compare Datasets", variant="primary")
|
1260 |
+
|
1261 |
+
comparison_output = gr.Markdown(label="Comparison Results")
|
1262 |
+
|
1263 |
+
# Update checkbox choices when datasets change
|
1264 |
+
def update_compare_selector():
|
1265 |
+
return gr.update(choices=get_dataset_choices())
|
1266 |
+
|
1267 |
+
timer.tick(fn=update_compare_selector, outputs=compare_dataset_selector)
|
1268 |
+
|
1269 |
+
compare_button.click(
|
1270 |
+
fn=compare_datasets_gradio,
|
1271 |
+
inputs=[compare_question, compare_dataset_selector],
|
1272 |
+
outputs=comparison_output
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
# Tab 4: Visualization
|
1276 |
+
with gr.Tab("π Visualizations"):
|
1277 |
+
gr.Markdown("### Dataset Visualizations")
|
1278 |
+
|
1279 |
+
with gr.Row():
|
1280 |
+
with gr.Column():
|
1281 |
+
viz_dataset_selector = gr.CheckboxGroup(
|
1282 |
+
choices=get_dataset_choices(),
|
1283 |
+
label="Select Datasets to Visualize",
|
1284 |
+
value=[]
|
1285 |
+
)
|
1286 |
+
|
1287 |
+
viz_dimension = gr.Radio(
|
1288 |
+
choices=[2, 3],
|
1289 |
+
value=2,
|
1290 |
+
label="Visualization Dimensions"
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
viz_sample_size = gr.Slider(
|
1294 |
+
minimum=100,
|
1295 |
+
maximum=2000,
|
1296 |
+
value=500,
|
1297 |
+
step=100,
|
1298 |
+
label="Sample Size (per dataset)"
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
create_viz_button = gr.Button("π¨ Create Visualization", variant="primary")
|
1302 |
+
stats_button = gr.Button("π Show Statistics")
|
1303 |
+
|
1304 |
+
viz_status = gr.Textbox(label="Status", lines=2)
|
1305 |
+
|
1306 |
+
with gr.Row():
|
1307 |
+
viz_plot = gr.Plot(label="Vector Space Visualization")
|
1308 |
+
stats_plot = gr.Plot(label="Dataset Statistics")
|
1309 |
+
|
1310 |
+
# Update visualization selector
|
1311 |
+
def update_viz_selector():
|
1312 |
+
return gr.update(choices=get_dataset_choices())
|
1313 |
+
|
1314 |
+
timer.tick(fn=update_viz_selector, outputs=viz_dataset_selector)
|
1315 |
+
|
1316 |
+
create_viz_button.click(
|
1317 |
+
fn=visualize_datasets_gradio,
|
1318 |
+
inputs=[viz_dataset_selector, viz_dimension, viz_sample_size],
|
1319 |
+
outputs=[viz_plot, viz_status]
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
stats_button.click(
|
1323 |
+
fn=create_dataset_statistics_plot,
|
1324 |
+
inputs=[viz_dataset_selector],
|
1325 |
+
outputs=[stats_plot, viz_status]
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
# Tab 5: Dataset Inspector
|
1329 |
+
with gr.Tab("π Dataset Inspector"):
|
1330 |
+
gr.Markdown("### Inspect Dataset Contents")
|
1331 |
+
|
1332 |
+
inspect_current_info = gr.Markdown(get_current_dataset_info())
|
1333 |
+
timer.tick(fn=get_current_dataset_info, outputs=inspect_current_info)
|
1334 |
+
|
1335 |
+
num_samples_slider = gr.Slider(
|
1336 |
+
minimum=1,
|
1337 |
+
maximum=20,
|
1338 |
+
value=5,
|
1339 |
+
step=1,
|
1340 |
+
label="Number of Sample Documents"
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
inspect_button = gr.Button("π Inspect Current Dataset", variant="primary")
|
1344 |
+
|
1345 |
+
inspection_output = gr.Markdown(label="Dataset Inspection Results")
|
1346 |
+
|
1347 |
+
inspect_button.click(
|
1348 |
+
fn=inspect_dataset_gradio,
|
1349 |
+
inputs=num_samples_slider,
|
1350 |
+
outputs=inspection_output
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
# Tab 6: Settings & Help
|
1354 |
+
with gr.Tab("βοΈ Settings & Help"):
|
1355 |
+
gr.Markdown(
|
1356 |
+
"""
|
1357 |
+
### System Information
|
1358 |
+
|
1359 |
+
**Model:** GPT-4 Mini
|
1360 |
+
**Embedding Model:** OpenAI Embeddings
|
1361 |
+
**Vector Store:** FAISS
|
1362 |
+
|
1363 |
+
### API Configuration
|
1364 |
+
|
1365 |
+
This system uses the CMS.gov Data API to fetch Medicare provider information.
|
1366 |
+
|
1367 |
+
### Tips for Best Results
|
1368 |
+
|
1369 |
+
1. **Loading Data**: Start with sample data (100 records) to test queries quickly
|
1370 |
+
2. **State Selection**: Load specific states for focused analysis
|
1371 |
+
3. **Querying**: Be specific in your questions for better results
|
1372 |
+
4. **Comparisons**: Load multiple quarters/states to analyze trends
|
1373 |
+
|
1374 |
+
### Common Use Cases
|
1375 |
+
|
1376 |
+
- **Provider Analysis**: Find specific types of healthcare providers
|
1377 |
+
- **Geographic Distribution**: Analyze providers by state
|
1378 |
+
- **Temporal Trends**: Compare data across different quarters
|
1379 |
+
- **Provider Types**: Understand the distribution of specialties
|
1380 |
+
|
1381 |
+
### Troubleshooting
|
1382 |
+
|
1383 |
+
- **No API Key**: Ensure OPENAI_API_KEY is set in your environment
|
1384 |
+
- **Loading Errors**: Check your internet connection and API limits
|
1385 |
+
- **Query Errors**: Try rephrasing your question or check if data is loaded
|
1386 |
+
"""
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
with gr.Row():
|
1390 |
+
gr.Markdown("### Current Configuration")
|
1391 |
+
config_info = gr.JSON(
|
1392 |
+
value={
|
1393 |
+
"api_key_set": bool(os.getenv('OPENAI_API_KEY')),
|
1394 |
+
"default_model": DEFAULT_MODEL,
|
1395 |
+
"api_base_url": API_BASE_URL,
|
1396 |
+
"datasets_loaded": len(rag_systems)
|
1397 |
+
},
|
1398 |
+
label="System Configuration"
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
# Footer
|
1402 |
+
gr.Markdown(
|
1403 |
+
"""
|
1404 |
+
---
|
1405 |
+
|
1406 |
+
<center>
|
1407 |
+
Medicare Provider Data Analysis System | Powered by LangChain & OpenAI
|
1408 |
+
</center>
|
1409 |
+
"""
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
return app
|
1413 |
+
|
1414 |
+
# Main execution
|
1415 |
+
if __name__ == "__main__":
|
1416 |
+
# Create and launch the app
|
1417 |
+
app = create_gradio_interface()
|
1418 |
+
|
1419 |
+
# Launch with appropriate settings
|
1420 |
+
app.launch(
|
1421 |
+
server_name="0.0.0.0", # Allow external connections
|
1422 |
+
server_port=7860, # Default Gradio port
|
1423 |
+
|
1424 |
+
)
|