Spaces:
Runtime error
Runtime error
Update App_Function_Libraries/RAG_Libary_2.py
Browse files- App_Function_Libraries/RAG_Libary_2.py +721 -720
App_Function_Libraries/RAG_Libary_2.py
CHANGED
|
@@ -1,720 +1,721 @@
|
|
| 1 |
-
# Import necessary modules and functions
|
| 2 |
-
import configparser
|
| 3 |
-
from typing import Dict, Any
|
| 4 |
-
# Local Imports
|
| 5 |
-
from App_Function_Libraries.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
| 6 |
-
from Article_Extractor_Lib import scrape_article
|
| 7 |
-
from SQLite_DB import search_db, db
|
| 8 |
-
# 3rd-Party Imports
|
| 9 |
-
import openai
|
| 10 |
-
# Initialize OpenAI client (adjust this based on your API key management)
|
| 11 |
-
openai.api_key = "your-openai-api-key"
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# Main RAG pipeline function
|
| 15 |
-
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
| 16 |
-
# Extract content
|
| 17 |
-
article_data = scrape_article(url)
|
| 18 |
-
content = article_data['content']
|
| 19 |
-
|
| 20 |
-
# Process and store content
|
| 21 |
-
collection_name = "article_" + str(hash(url))
|
| 22 |
-
process_and_store_content(content, collection_name)
|
| 23 |
-
|
| 24 |
-
# Perform searches
|
| 25 |
-
vector_results = vector_search(collection_name, query, k=5)
|
| 26 |
-
fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
| 27 |
-
|
| 28 |
-
# Combine results
|
| 29 |
-
all_results = vector_results + [result['content'] for result in fts_results]
|
| 30 |
-
context = "\n".join(all_results)
|
| 31 |
-
|
| 32 |
-
# Generate answer using the selected API
|
| 33 |
-
answer = generate_answer(api_choice, context, query)
|
| 34 |
-
|
| 35 |
-
return {
|
| 36 |
-
"answer": answer,
|
| 37 |
-
"context": context
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
config.
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
cursor.
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
answer
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
"
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
#
|
| 128 |
-
#
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#
|
| 133 |
-
#
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
#
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
#
|
| 145 |
-
#
|
| 146 |
-
#
|
| 147 |
-
#
|
| 148 |
-
# from
|
| 149 |
-
# from
|
| 150 |
-
# from
|
| 151 |
-
#
|
| 152 |
-
#
|
| 153 |
-
# from
|
| 154 |
-
# from langchain.
|
| 155 |
-
# import
|
| 156 |
-
#
|
| 157 |
-
# from
|
| 158 |
-
# from
|
| 159 |
-
# from langchain_core.
|
| 160 |
-
# from
|
| 161 |
-
# from langchain.retrievers
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
#
|
| 166 |
-
#
|
| 167 |
-
#
|
| 168 |
-
#
|
| 169 |
-
#
|
| 170 |
-
#
|
| 171 |
-
#
|
| 172 |
-
#
|
| 173 |
-
#
|
| 174 |
-
#
|
| 175 |
-
#
|
| 176 |
-
#
|
| 177 |
-
#
|
| 178 |
-
#
|
| 179 |
-
#
|
| 180 |
-
#
|
| 181 |
-
#
|
| 182 |
-
#
|
| 183 |
-
#
|
| 184 |
-
#
|
| 185 |
-
#
|
| 186 |
-
#
|
| 187 |
-
#
|
| 188 |
-
#
|
| 189 |
-
#
|
| 190 |
-
#
|
| 191 |
-
#
|
| 192 |
-
#
|
| 193 |
-
# retriever
|
| 194 |
-
#
|
| 195 |
-
#
|
| 196 |
-
#
|
| 197 |
-
#
|
| 198 |
-
# .assign(
|
| 199 |
-
# .
|
| 200 |
-
#
|
| 201 |
-
#
|
| 202 |
-
#
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
#
|
| 208 |
-
# print(res["
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
-
#
|
| 221 |
-
# from
|
| 222 |
-
# from
|
| 223 |
-
# from
|
| 224 |
-
# from
|
| 225 |
-
# from langchain.retrievers import
|
| 226 |
-
# from langchain.
|
| 227 |
-
# from
|
| 228 |
-
# from
|
| 229 |
-
# from langchain.retrievers.document_compressors import
|
| 230 |
-
# from langchain.retrievers import
|
| 231 |
-
# import
|
| 232 |
-
#
|
| 233 |
-
# from
|
| 234 |
-
# from
|
| 235 |
-
# from langchain_core.
|
| 236 |
-
# from
|
| 237 |
-
# from langchain.retrievers
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
#
|
| 242 |
-
#
|
| 243 |
-
#
|
| 244 |
-
#
|
| 245 |
-
#
|
| 246 |
-
#
|
| 247 |
-
#
|
| 248 |
-
#
|
| 249 |
-
#
|
| 250 |
-
#
|
| 251 |
-
#
|
| 252 |
-
#
|
| 253 |
-
#
|
| 254 |
-
#
|
| 255 |
-
#
|
| 256 |
-
#
|
| 257 |
-
#
|
| 258 |
-
#
|
| 259 |
-
#
|
| 260 |
-
#
|
| 261 |
-
#
|
| 262 |
-
#
|
| 263 |
-
#
|
| 264 |
-
#
|
| 265 |
-
#
|
| 266 |
-
#
|
| 267 |
-
#
|
| 268 |
-
# retriever
|
| 269 |
-
#
|
| 270 |
-
# arr_comp
|
| 271 |
-
# arr_comp.append(
|
| 272 |
-
#
|
| 273 |
-
#
|
| 274 |
-
#
|
| 275 |
-
#
|
| 276 |
-
#
|
| 277 |
-
#
|
| 278 |
-
# .assign(
|
| 279 |
-
# .
|
| 280 |
-
#
|
| 281 |
-
#
|
| 282 |
-
#
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
#
|
| 288 |
-
# print(res["
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
#
|
| 299 |
-
#
|
| 300 |
-
#
|
| 301 |
-
#
|
| 302 |
-
#
|
| 303 |
-
#
|
| 304 |
-
#
|
| 305 |
-
#
|
| 306 |
-
#
|
| 307 |
-
#
|
| 308 |
-
#
|
| 309 |
-
#
|
| 310 |
-
#
|
| 311 |
-
#
|
| 312 |
-
#
|
| 313 |
-
#
|
| 314 |
-
#
|
| 315 |
-
#
|
| 316 |
-
#
|
| 317 |
-
#
|
| 318 |
-
#
|
| 319 |
-
#
|
| 320 |
-
#
|
| 321 |
-
#
|
| 322 |
-
#
|
| 323 |
-
#
|
| 324 |
-
#
|
| 325 |
-
#
|
| 326 |
-
#
|
| 327 |
-
#
|
| 328 |
-
#
|
| 329 |
-
#
|
| 330 |
-
#
|
| 331 |
-
#
|
| 332 |
-
#
|
| 333 |
-
#
|
| 334 |
-
#
|
| 335 |
-
#
|
| 336 |
-
#
|
| 337 |
-
#
|
| 338 |
-
#
|
| 339 |
-
# "rank_bm25
|
| 340 |
-
#
|
| 341 |
-
#
|
| 342 |
-
#
|
| 343 |
-
#
|
| 344 |
-
#
|
| 345 |
-
#
|
| 346 |
-
#
|
| 347 |
-
#
|
| 348 |
-
#
|
| 349 |
-
#
|
| 350 |
-
#
|
| 351 |
-
#
|
| 352 |
-
#
|
| 353 |
-
#
|
| 354 |
-
#
|
| 355 |
-
#
|
| 356 |
-
#
|
| 357 |
-
#
|
| 358 |
-
#
|
| 359 |
-
#
|
| 360 |
-
#
|
| 361 |
-
#
|
| 362 |
-
#
|
| 363 |
-
#
|
| 364 |
-
#
|
| 365 |
-
#
|
| 366 |
-
#
|
| 367 |
-
#
|
| 368 |
-
#
|
| 369 |
-
#
|
| 370 |
-
#
|
| 371 |
-
#
|
| 372 |
-
#
|
| 373 |
-
#
|
| 374 |
-
#
|
| 375 |
-
#
|
| 376 |
-
#
|
| 377 |
-
#
|
| 378 |
-
#
|
| 379 |
-
#
|
| 380 |
-
#
|
| 381 |
-
#
|
| 382 |
-
#
|
| 383 |
-
#
|
| 384 |
-
#
|
| 385 |
-
#
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
#
|
| 391 |
-
#
|
| 392 |
-
#
|
| 393 |
-
#
|
| 394 |
-
#
|
| 395 |
-
#
|
| 396 |
-
#
|
| 397 |
-
#
|
| 398 |
-
#
|
| 399 |
-
#
|
| 400 |
-
#
|
| 401 |
-
# Elastic Cloud
|
| 402 |
-
#
|
| 403 |
-
#
|
| 404 |
-
#
|
| 405 |
-
#
|
| 406 |
-
#
|
| 407 |
-
#
|
| 408 |
-
#
|
| 409 |
-
#
|
| 410 |
-
#
|
| 411 |
-
#
|
| 412 |
-
#
|
| 413 |
-
#
|
| 414 |
-
#
|
| 415 |
-
#
|
| 416 |
-
#
|
| 417 |
-
#
|
| 418 |
-
#
|
| 419 |
-
#
|
| 420 |
-
#
|
| 421 |
-
#
|
| 422 |
-
#
|
| 423 |
-
#
|
| 424 |
-
#
|
| 425 |
-
#
|
| 426 |
-
#
|
| 427 |
-
#
|
| 428 |
-
#
|
| 429 |
-
#
|
| 430 |
-
#
|
| 431 |
-
#
|
| 432 |
-
#
|
| 433 |
-
#
|
| 434 |
-
#
|
| 435 |
-
#
|
| 436 |
-
#
|
| 437 |
-
#
|
| 438 |
-
#
|
| 439 |
-
#
|
| 440 |
-
#
|
| 441 |
-
#
|
| 442 |
-
#
|
| 443 |
-
# settings
|
| 444 |
-
#
|
| 445 |
-
# "
|
| 446 |
-
#
|
| 447 |
-
#
|
| 448 |
-
# "
|
| 449 |
-
# "
|
| 450 |
-
#
|
| 451 |
-
#
|
| 452 |
-
#
|
| 453 |
-
#
|
| 454 |
-
#
|
| 455 |
-
#
|
| 456 |
-
#
|
| 457 |
-
# "
|
| 458 |
-
#
|
| 459 |
-
#
|
| 460 |
-
#
|
| 461 |
-
#
|
| 462 |
-
#
|
| 463 |
-
#
|
| 464 |
-
#
|
| 465 |
-
#
|
| 466 |
-
#
|
| 467 |
-
#
|
| 468 |
-
#
|
| 469 |
-
#
|
| 470 |
-
#
|
| 471 |
-
#
|
| 472 |
-
#
|
| 473 |
-
#
|
| 474 |
-
#
|
| 475 |
-
#
|
| 476 |
-
#
|
| 477 |
-
#
|
| 478 |
-
#
|
| 479 |
-
#
|
| 480 |
-
#
|
| 481 |
-
#
|
| 482 |
-
#
|
| 483 |
-
#
|
| 484 |
-
#
|
| 485 |
-
# "
|
| 486 |
-
#
|
| 487 |
-
#
|
| 488 |
-
#
|
| 489 |
-
#
|
| 490 |
-
#
|
| 491 |
-
#
|
| 492 |
-
#
|
| 493 |
-
# "
|
| 494 |
-
# "
|
| 495 |
-
# "
|
| 496 |
-
#
|
| 497 |
-
#
|
| 498 |
-
#
|
| 499 |
-
#
|
| 500 |
-
#
|
| 501 |
-
#
|
| 502 |
-
#
|
| 503 |
-
#
|
| 504 |
-
#
|
| 505 |
-
#
|
| 506 |
-
#
|
| 507 |
-
#
|
| 508 |
-
#
|
| 509 |
-
#
|
| 510 |
-
#
|
| 511 |
-
#
|
| 512 |
-
#
|
| 513 |
-
#
|
| 514 |
-
#
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
#
|
| 521 |
-
#
|
| 522 |
-
#
|
| 523 |
-
#
|
| 524 |
-
#
|
| 525 |
-
#
|
| 526 |
-
#
|
| 527 |
-
#
|
| 528 |
-
#
|
| 529 |
-
#
|
| 530 |
-
#
|
| 531 |
-
#
|
| 532 |
-
#
|
| 533 |
-
#
|
| 534 |
-
#
|
| 535 |
-
#
|
| 536 |
-
#
|
| 537 |
-
#
|
| 538 |
-
#
|
| 539 |
-
#
|
| 540 |
-
#
|
| 541 |
-
#
|
| 542 |
-
#
|
| 543 |
-
#
|
| 544 |
-
#
|
| 545 |
-
#
|
| 546 |
-
#
|
| 547 |
-
#
|
| 548 |
-
#
|
| 549 |
-
#
|
| 550 |
-
#
|
| 551 |
-
#
|
| 552 |
-
#
|
| 553 |
-
#
|
| 554 |
-
#
|
| 555 |
-
#
|
| 556 |
-
#
|
| 557 |
-
#
|
| 558 |
-
#
|
| 559 |
-
#
|
| 560 |
-
#
|
| 561 |
-
#
|
| 562 |
-
#
|
| 563 |
-
#
|
| 564 |
-
#
|
| 565 |
-
#
|
| 566 |
-
#
|
| 567 |
-
#
|
| 568 |
-
#
|
| 569 |
-
#
|
| 570 |
-
#
|
| 571 |
-
#
|
| 572 |
-
#
|
| 573 |
-
#
|
| 574 |
-
#
|
| 575 |
-
#
|
| 576 |
-
#
|
| 577 |
-
#
|
| 578 |
-
#
|
| 579 |
-
#
|
| 580 |
-
#
|
| 581 |
-
#
|
| 582 |
-
#
|
| 583 |
-
#
|
| 584 |
-
#
|
| 585 |
-
#
|
| 586 |
-
#
|
| 587 |
-
#
|
| 588 |
-
#
|
| 589 |
-
#
|
| 590 |
-
#
|
| 591 |
-
#
|
| 592 |
-
#
|
| 593 |
-
#
|
| 594 |
-
#
|
| 595 |
-
#
|
| 596 |
-
#
|
| 597 |
-
#
|
| 598 |
-
#
|
| 599 |
-
#
|
| 600 |
-
#
|
| 601 |
-
#
|
| 602 |
-
#
|
| 603 |
-
#
|
| 604 |
-
#
|
| 605 |
-
#
|
| 606 |
-
#
|
| 607 |
-
#
|
| 608 |
-
#
|
| 609 |
-
#
|
| 610 |
-
#
|
| 611 |
-
#
|
| 612 |
-
#
|
| 613 |
-
#
|
| 614 |
-
#
|
| 615 |
-
#
|
| 616 |
-
#
|
| 617 |
-
#
|
| 618 |
-
#
|
| 619 |
-
#
|
| 620 |
-
#
|
| 621 |
-
#
|
| 622 |
-
#
|
| 623 |
-
#
|
| 624 |
-
#
|
| 625 |
-
#
|
| 626 |
-
#
|
| 627 |
-
#
|
| 628 |
-
#
|
| 629 |
-
#
|
| 630 |
-
#
|
| 631 |
-
#
|
| 632 |
-
#
|
| 633 |
-
#
|
| 634 |
-
#
|
| 635 |
-
#
|
| 636 |
-
#
|
| 637 |
-
#
|
| 638 |
-
#
|
| 639 |
-
#
|
| 640 |
-
#
|
| 641 |
-
#
|
| 642 |
-
#
|
| 643 |
-
#
|
| 644 |
-
#
|
| 645 |
-
#
|
| 646 |
-
#
|
| 647 |
-
#
|
| 648 |
-
#
|
| 649 |
-
#
|
| 650 |
-
#
|
| 651 |
-
#
|
| 652 |
-
#
|
| 653 |
-
#
|
| 654 |
-
#
|
| 655 |
-
#
|
| 656 |
-
#
|
| 657 |
-
#
|
| 658 |
-
#
|
| 659 |
-
#
|
| 660 |
-
#
|
| 661 |
-
#
|
| 662 |
-
#
|
| 663 |
-
#
|
| 664 |
-
#
|
| 665 |
-
#
|
| 666 |
-
#
|
| 667 |
-
#
|
| 668 |
-
#
|
| 669 |
-
#
|
| 670 |
-
#
|
| 671 |
-
#
|
| 672 |
-
#
|
| 673 |
-
#
|
| 674 |
-
#
|
| 675 |
-
#
|
| 676 |
-
#
|
| 677 |
-
#
|
| 678 |
-
#
|
| 679 |
-
#
|
| 680 |
-
#
|
| 681 |
-
#
|
| 682 |
-
#
|
| 683 |
-
#
|
| 684 |
-
#
|
| 685 |
-
#
|
| 686 |
-
#
|
| 687 |
-
#
|
| 688 |
-
#
|
| 689 |
-
#
|
| 690 |
-
#
|
| 691 |
-
#
|
| 692 |
-
#
|
| 693 |
-
#
|
| 694 |
-
#
|
| 695 |
-
#
|
| 696 |
-
#
|
| 697 |
-
#
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
#
|
| 712 |
-
#
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
|
|
|
|
|
| 1 |
+
# Import necessary modules and functions
|
| 2 |
+
import configparser
|
| 3 |
+
from typing import Dict, Any
|
| 4 |
+
# Local Imports
|
| 5 |
+
#from App_Function_Libraries.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
| 6 |
+
from Article_Extractor_Lib import scrape_article
|
| 7 |
+
from SQLite_DB import search_db, db
|
| 8 |
+
# 3rd-Party Imports
|
| 9 |
+
#import openai
|
| 10 |
+
# Initialize OpenAI client (adjust this based on your API key management)
|
| 11 |
+
#openai.api_key = "your-openai-api-key"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Main RAG pipeline function
|
| 15 |
+
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
| 16 |
+
# Extract content
|
| 17 |
+
# article_data = scrape_article(url)
|
| 18 |
+
# content = article_data['content']
|
| 19 |
+
|
| 20 |
+
# Process and store content
|
| 21 |
+
# collection_name = "article_" + str(hash(url))
|
| 22 |
+
# process_and_store_content(content, collection_name)
|
| 23 |
+
|
| 24 |
+
# Perform searches
|
| 25 |
+
# vector_results = vector_search(collection_name, query, k=5)
|
| 26 |
+
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
| 27 |
+
|
| 28 |
+
# Combine results
|
| 29 |
+
# all_results = vector_results + [result['content'] for result in fts_results]
|
| 30 |
+
# context = "\n".join(all_results)
|
| 31 |
+
|
| 32 |
+
# Generate answer using the selected API
|
| 33 |
+
# answer = generate_answer(api_choice, context, query)
|
| 34 |
+
|
| 35 |
+
# return {
|
| 36 |
+
# "answer": answer,
|
| 37 |
+
# "context": context
|
| 38 |
+
# }
|
| 39 |
+
pass
|
| 40 |
+
|
| 41 |
+
config = configparser.ConfigParser()
|
| 42 |
+
config.read('config.txt')
|
| 43 |
+
|
| 44 |
+
def generate_answer(api_choice: str, context: str, query: str) -> str:
|
| 45 |
+
prompt = f"Context: {context}\n\nQuestion: {query}"
|
| 46 |
+
if api_choice == "OpenAI":
|
| 47 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
|
| 48 |
+
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
|
| 49 |
+
elif api_choice == "Anthropic":
|
| 50 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
|
| 51 |
+
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
|
| 52 |
+
elif api_choice == "Cohere":
|
| 53 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
|
| 54 |
+
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
|
| 55 |
+
elif api_choice == "Groq":
|
| 56 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
|
| 57 |
+
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
|
| 58 |
+
elif api_choice == "OpenRouter":
|
| 59 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
|
| 60 |
+
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
|
| 61 |
+
elif api_choice == "HuggingFace":
|
| 62 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
|
| 63 |
+
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
|
| 64 |
+
elif api_choice == "DeepSeek":
|
| 65 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
|
| 66 |
+
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
|
| 67 |
+
elif api_choice == "Mistral":
|
| 68 |
+
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
|
| 69 |
+
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
|
| 70 |
+
elif api_choice == "Local-LLM":
|
| 71 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
|
| 72 |
+
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
|
| 73 |
+
elif api_choice == "Llama.cpp":
|
| 74 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
|
| 75 |
+
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
|
| 76 |
+
elif api_choice == "Kobold":
|
| 77 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
|
| 78 |
+
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
|
| 79 |
+
elif api_choice == "Ooba":
|
| 80 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
|
| 81 |
+
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
|
| 82 |
+
elif api_choice == "TabbyAPI":
|
| 83 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
|
| 84 |
+
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
|
| 85 |
+
elif api_choice == "vLLM":
|
| 86 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
|
| 87 |
+
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
|
| 88 |
+
elif api_choice == "ollama":
|
| 89 |
+
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
|
| 90 |
+
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
|
| 91 |
+
else:
|
| 92 |
+
raise ValueError(f"Unsupported API choice: {api_choice}")
|
| 93 |
+
|
| 94 |
+
# Function to preprocess and store all existing content in the database
|
| 95 |
+
#def preprocess_all_content():
|
| 96 |
+
# with db.get_connection() as conn:
|
| 97 |
+
# cursor = conn.cursor()
|
| 98 |
+
# cursor.execute("SELECT id, content FROM Media")
|
| 99 |
+
# for row in cursor.fetchall():
|
| 100 |
+
# process_and_store_content(row[1], f"media_{row[0]}")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Function to perform RAG search across all stored content
|
| 104 |
+
def rag_search(query: str, api_choice: str) -> Dict[str, Any]:
|
| 105 |
+
# Perform vector search across all collections
|
| 106 |
+
# all_collections = chroma_client.list_collections()
|
| 107 |
+
# vector_results = []
|
| 108 |
+
# for collection in all_collections:
|
| 109 |
+
# vector_results.extend(vector_search(collection.name, query, k=2))
|
| 110 |
+
|
| 111 |
+
# Perform FTS search
|
| 112 |
+
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=10)
|
| 113 |
+
|
| 114 |
+
# Combine results
|
| 115 |
+
# all_results = vector_results + [result['content'] for result in fts_results]
|
| 116 |
+
# context = "\n".join(all_results[:10]) # Limit to top 10 results
|
| 117 |
+
|
| 118 |
+
# Generate answer using the selected API
|
| 119 |
+
# answer = generate_answer(api_choice, context, query)
|
| 120 |
+
|
| 121 |
+
# return {
|
| 122 |
+
# "answer": answer,
|
| 123 |
+
# "context": context
|
| 124 |
+
# }
|
| 125 |
+
pass
|
| 126 |
+
|
| 127 |
+
# Example usage:
|
| 128 |
+
# 1. Initialize the system:
|
| 129 |
+
# create_tables(db) # Ensure FTS tables are set up
|
| 130 |
+
# preprocess_all_content() # Process and store all existing content
|
| 131 |
+
|
| 132 |
+
# 2. Perform RAG on a specific URL:
|
| 133 |
+
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
|
| 134 |
+
# print(result['answer'])
|
| 135 |
+
|
| 136 |
+
# 3. Perform RAG search across all content:
|
| 137 |
+
# result = rag_search("What are the key points about climate change?")
|
| 138 |
+
# print(result['answer'])
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
##################################################################################################################
|
| 144 |
+
# RAG Pipeline 1
|
| 145 |
+
#0.62 0.61 0.75 63402.0
|
| 146 |
+
# from langchain_openai import ChatOpenAI
|
| 147 |
+
#
|
| 148 |
+
# from langchain_community.document_loaders import WebBaseLoader
|
| 149 |
+
# from langchain_openai import OpenAIEmbeddings
|
| 150 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 151 |
+
# from langchain_chroma import Chroma
|
| 152 |
+
#
|
| 153 |
+
# from langchain_community.retrievers import BM25Retriever
|
| 154 |
+
# from langchain.retrievers import ParentDocumentRetriever
|
| 155 |
+
# from langchain.storage import InMemoryStore
|
| 156 |
+
# import os
|
| 157 |
+
# from operator import itemgetter
|
| 158 |
+
# from langchain import hub
|
| 159 |
+
# from langchain_core.output_parsers import StrOutputParser
|
| 160 |
+
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
| 161 |
+
# from langchain.retrievers import MergerRetriever
|
| 162 |
+
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# def rag_pipeline():
|
| 166 |
+
# try:
|
| 167 |
+
# def format_docs(docs):
|
| 168 |
+
# return "\n".join(doc.page_content for doc in docs)
|
| 169 |
+
#
|
| 170 |
+
# llm = ChatOpenAI(model='gpt-4o-mini')
|
| 171 |
+
#
|
| 172 |
+
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
| 173 |
+
# docs = loader.load()
|
| 174 |
+
#
|
| 175 |
+
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
| 176 |
+
#
|
| 177 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
| 178 |
+
# splits = splitter.split_documents(docs)
|
| 179 |
+
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
| 180 |
+
# collection_name='testindex-ragbuilder-1724657573', )
|
| 181 |
+
# retrievers = []
|
| 182 |
+
# retriever = c.as_retriever(search_type='mmr', search_kwargs={'k': 10})
|
| 183 |
+
# retrievers.append(retriever)
|
| 184 |
+
# retriever = BM25Retriever.from_documents(docs)
|
| 185 |
+
# retrievers.append(retriever)
|
| 186 |
+
#
|
| 187 |
+
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
| 188 |
+
# splits = parent_splitter.split_documents(docs)
|
| 189 |
+
# store = InMemoryStore()
|
| 190 |
+
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
| 191 |
+
# parent_splitter=parent_splitter)
|
| 192 |
+
# retriever.add_documents(docs)
|
| 193 |
+
# retrievers.append(retriever)
|
| 194 |
+
# retriever = MergerRetriever(retrievers=retrievers)
|
| 195 |
+
# prompt = hub.pull("rlm/rag-prompt")
|
| 196 |
+
# rag_chain = (
|
| 197 |
+
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
| 198 |
+
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
| 199 |
+
# .assign(answer=prompt | llm | StrOutputParser())
|
| 200 |
+
# .pick(["answer", "context"]))
|
| 201 |
+
# return rag_chain
|
| 202 |
+
# except Exception as e:
|
| 203 |
+
# print(f"An error occurred: {e}")
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
##To get the answer and context, use the following code
|
| 207 |
+
# res=rag_pipeline().invoke("your prompt here")
|
| 208 |
+
# print(res["answer"])
|
| 209 |
+
# print(res["context"])
|
| 210 |
+
|
| 211 |
+
############################################################################################################
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
############################################################################################################
|
| 216 |
+
# RAG Pipeline 2
|
| 217 |
+
|
| 218 |
+
#0.6 0.73 0.68 3125.0
|
| 219 |
+
# from langchain_openai import ChatOpenAI
|
| 220 |
+
#
|
| 221 |
+
# from langchain_community.document_loaders import WebBaseLoader
|
| 222 |
+
# from langchain_openai import OpenAIEmbeddings
|
| 223 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 224 |
+
# from langchain_chroma import Chroma
|
| 225 |
+
# from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 226 |
+
# from langchain.retrievers import ParentDocumentRetriever
|
| 227 |
+
# from langchain.storage import InMemoryStore
|
| 228 |
+
# from langchain_community.document_transformers import EmbeddingsRedundantFilter
|
| 229 |
+
# from langchain.retrievers.document_compressors import LLMChainFilter
|
| 230 |
+
# from langchain.retrievers.document_compressors import EmbeddingsFilter
|
| 231 |
+
# from langchain.retrievers import ContextualCompressionRetriever
|
| 232 |
+
# import os
|
| 233 |
+
# from operator import itemgetter
|
| 234 |
+
# from langchain import hub
|
| 235 |
+
# from langchain_core.output_parsers import StrOutputParser
|
| 236 |
+
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
| 237 |
+
# from langchain.retrievers import MergerRetriever
|
| 238 |
+
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# def rag_pipeline():
|
| 242 |
+
# try:
|
| 243 |
+
# def format_docs(docs):
|
| 244 |
+
# return "\n".join(doc.page_content for doc in docs)
|
| 245 |
+
#
|
| 246 |
+
# llm = ChatOpenAI(model='gpt-4o-mini')
|
| 247 |
+
#
|
| 248 |
+
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
| 249 |
+
# docs = loader.load()
|
| 250 |
+
#
|
| 251 |
+
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
| 252 |
+
#
|
| 253 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
| 254 |
+
# splits = splitter.split_documents(docs)
|
| 255 |
+
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
| 256 |
+
# collection_name='testindex-ragbuilder-1724650962', )
|
| 257 |
+
# retrievers = []
|
| 258 |
+
# retriever = MultiQueryRetriever.from_llm(c.as_retriever(search_type='similarity', search_kwargs={'k': 10}),
|
| 259 |
+
# llm=llm)
|
| 260 |
+
# retrievers.append(retriever)
|
| 261 |
+
#
|
| 262 |
+
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
| 263 |
+
# splits = parent_splitter.split_documents(docs)
|
| 264 |
+
# store = InMemoryStore()
|
| 265 |
+
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
| 266 |
+
# parent_splitter=parent_splitter)
|
| 267 |
+
# retriever.add_documents(docs)
|
| 268 |
+
# retrievers.append(retriever)
|
| 269 |
+
# retriever = MergerRetriever(retrievers=retrievers)
|
| 270 |
+
# arr_comp = []
|
| 271 |
+
# arr_comp.append(EmbeddingsRedundantFilter(embeddings=embedding))
|
| 272 |
+
# arr_comp.append(LLMChainFilter.from_llm(llm))
|
| 273 |
+
# pipeline_compressor = DocumentCompressorPipeline(transformers=arr_comp)
|
| 274 |
+
# retriever = ContextualCompressionRetriever(base_retriever=retriever, base_compressor=pipeline_compressor)
|
| 275 |
+
# prompt = hub.pull("rlm/rag-prompt")
|
| 276 |
+
# rag_chain = (
|
| 277 |
+
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
| 278 |
+
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
| 279 |
+
# .assign(answer=prompt | llm | StrOutputParser())
|
| 280 |
+
# .pick(["answer", "context"]))
|
| 281 |
+
# return rag_chain
|
| 282 |
+
# except Exception as e:
|
| 283 |
+
# print(f"An error occurred: {e}")
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
##To get the answer and context, use the following code
|
| 287 |
+
# res=rag_pipeline().invoke("your prompt here")
|
| 288 |
+
# print(res["answer"])
|
| 289 |
+
# print(res["context"])
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
############################################################################################################
|
| 298 |
+
# Plain bm25 retriever
|
| 299 |
+
# class BM25Retriever(BaseRetriever):
|
| 300 |
+
# """`BM25` retriever without Elasticsearch."""
|
| 301 |
+
#
|
| 302 |
+
# vectorizer: Any
|
| 303 |
+
# """ BM25 vectorizer."""
|
| 304 |
+
# docs: List[Document] = Field(repr=False)
|
| 305 |
+
# """ List of documents."""
|
| 306 |
+
# k: int = 4
|
| 307 |
+
# """ Number of documents to return."""
|
| 308 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func
|
| 309 |
+
# """ Preprocessing function to use on the text before BM25 vectorization."""
|
| 310 |
+
#
|
| 311 |
+
# class Config:
|
| 312 |
+
# arbitrary_types_allowed = True
|
| 313 |
+
#
|
| 314 |
+
# @classmethod
|
| 315 |
+
# def from_texts(
|
| 316 |
+
# cls,
|
| 317 |
+
# texts: Iterable[str],
|
| 318 |
+
# metadatas: Optional[Iterable[dict]] = None,
|
| 319 |
+
# bm25_params: Optional[Dict[str, Any]] = None,
|
| 320 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
| 321 |
+
# **kwargs: Any,
|
| 322 |
+
# ) -> BM25Retriever:
|
| 323 |
+
# """
|
| 324 |
+
# Create a BM25Retriever from a list of texts.
|
| 325 |
+
# Args:
|
| 326 |
+
# texts: A list of texts to vectorize.
|
| 327 |
+
# metadatas: A list of metadata dicts to associate with each text.
|
| 328 |
+
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
| 329 |
+
# preprocess_func: A function to preprocess each text before vectorization.
|
| 330 |
+
# **kwargs: Any other arguments to pass to the retriever.
|
| 331 |
+
#
|
| 332 |
+
# Returns:
|
| 333 |
+
# A BM25Retriever instance.
|
| 334 |
+
# """
|
| 335 |
+
# try:
|
| 336 |
+
# from rank_bm25 import BM25Okapi
|
| 337 |
+
# except ImportError:
|
| 338 |
+
# raise ImportError(
|
| 339 |
+
# "Could not import rank_bm25, please install with `pip install "
|
| 340 |
+
# "rank_bm25`."
|
| 341 |
+
# )
|
| 342 |
+
#
|
| 343 |
+
# texts_processed = [preprocess_func(t) for t in texts]
|
| 344 |
+
# bm25_params = bm25_params or {}
|
| 345 |
+
# vectorizer = BM25Okapi(texts_processed, **bm25_params)
|
| 346 |
+
# metadatas = metadatas or ({} for _ in texts)
|
| 347 |
+
# docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
|
| 348 |
+
# return cls(
|
| 349 |
+
# vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
|
| 350 |
+
# )
|
| 351 |
+
#
|
| 352 |
+
# @classmethod
|
| 353 |
+
# def from_documents(
|
| 354 |
+
# cls,
|
| 355 |
+
# documents: Iterable[Document],
|
| 356 |
+
# *,
|
| 357 |
+
# bm25_params: Optional[Dict[str, Any]] = None,
|
| 358 |
+
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
| 359 |
+
# **kwargs: Any,
|
| 360 |
+
# ) -> BM25Retriever:
|
| 361 |
+
# """
|
| 362 |
+
# Create a BM25Retriever from a list of Documents.
|
| 363 |
+
# Args:
|
| 364 |
+
# documents: A list of Documents to vectorize.
|
| 365 |
+
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
| 366 |
+
# preprocess_func: A function to preprocess each text before vectorization.
|
| 367 |
+
# **kwargs: Any other arguments to pass to the retriever.
|
| 368 |
+
#
|
| 369 |
+
# Returns:
|
| 370 |
+
# A BM25Retriever instance.
|
| 371 |
+
# """
|
| 372 |
+
# texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
| 373 |
+
# return cls.from_texts(
|
| 374 |
+
# texts=texts,
|
| 375 |
+
# bm25_params=bm25_params,
|
| 376 |
+
# metadatas=metadatas,
|
| 377 |
+
# preprocess_func=preprocess_func,
|
| 378 |
+
# **kwargs,
|
| 379 |
+
# )
|
| 380 |
+
#
|
| 381 |
+
# def _get_relevant_documents(
|
| 382 |
+
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
| 383 |
+
# ) -> List[Document]:
|
| 384 |
+
# processed_query = self.preprocess_func(query)
|
| 385 |
+
# return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
|
| 386 |
+
# return return_docs
|
| 387 |
+
############################################################################################################
|
| 388 |
+
|
| 389 |
+
############################################################################################################
|
| 390 |
+
# ElasticSearch BM25 Retriever
|
| 391 |
+
# class ElasticSearchBM25Retriever(BaseRetriever):
|
| 392 |
+
# """`Elasticsearch` retriever that uses `BM25`.
|
| 393 |
+
#
|
| 394 |
+
# To connect to an Elasticsearch instance that requires login credentials,
|
| 395 |
+
# including Elastic Cloud, use the Elasticsearch URL format
|
| 396 |
+
# https://username:password@es_host:9243. For example, to connect to Elastic
|
| 397 |
+
# Cloud, create the Elasticsearch URL with the required authentication details and
|
| 398 |
+
# pass it to the ElasticVectorSearch constructor as the named parameter
|
| 399 |
+
# elasticsearch_url.
|
| 400 |
+
#
|
| 401 |
+
# You can obtain your Elastic Cloud URL and login credentials by logging in to the
|
| 402 |
+
# Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
|
| 403 |
+
# navigating to the "Deployments" page.
|
| 404 |
+
#
|
| 405 |
+
# To obtain your Elastic Cloud password for the default "elastic" user:
|
| 406 |
+
#
|
| 407 |
+
# 1. Log in to the Elastic Cloud console at https://cloud.elastic.co
|
| 408 |
+
# 2. Go to "Security" > "Users"
|
| 409 |
+
# 3. Locate the "elastic" user and click "Edit"
|
| 410 |
+
# 4. Click "Reset password"
|
| 411 |
+
# 5. Follow the prompts to reset the password
|
| 412 |
+
#
|
| 413 |
+
# The format for Elastic Cloud URLs is
|
| 414 |
+
# https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
|
| 415 |
+
# """
|
| 416 |
+
#
|
| 417 |
+
# client: Any
|
| 418 |
+
# """Elasticsearch client."""
|
| 419 |
+
# index_name: str
|
| 420 |
+
# """Name of the index to use in Elasticsearch."""
|
| 421 |
+
#
|
| 422 |
+
# @classmethod
|
| 423 |
+
# def create(
|
| 424 |
+
# cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75
|
| 425 |
+
# ) -> ElasticSearchBM25Retriever:
|
| 426 |
+
# """
|
| 427 |
+
# Create a ElasticSearchBM25Retriever from a list of texts.
|
| 428 |
+
#
|
| 429 |
+
# Args:
|
| 430 |
+
# elasticsearch_url: URL of the Elasticsearch instance to connect to.
|
| 431 |
+
# index_name: Name of the index to use in Elasticsearch.
|
| 432 |
+
# k1: BM25 parameter k1.
|
| 433 |
+
# b: BM25 parameter b.
|
| 434 |
+
#
|
| 435 |
+
# Returns:
|
| 436 |
+
#
|
| 437 |
+
# """
|
| 438 |
+
# from elasticsearch import Elasticsearch
|
| 439 |
+
#
|
| 440 |
+
# # Create an Elasticsearch client instance
|
| 441 |
+
# es = Elasticsearch(elasticsearch_url)
|
| 442 |
+
#
|
| 443 |
+
# # Define the index settings and mappings
|
| 444 |
+
# settings = {
|
| 445 |
+
# "analysis": {"analyzer": {"default": {"type": "standard"}}},
|
| 446 |
+
# "similarity": {
|
| 447 |
+
# "custom_bm25": {
|
| 448 |
+
# "type": "BM25",
|
| 449 |
+
# "k1": k1,
|
| 450 |
+
# "b": b,
|
| 451 |
+
# }
|
| 452 |
+
# },
|
| 453 |
+
# }
|
| 454 |
+
# mappings = {
|
| 455 |
+
# "properties": {
|
| 456 |
+
# "content": {
|
| 457 |
+
# "type": "text",
|
| 458 |
+
# "similarity": "custom_bm25", # Use the custom BM25 similarity
|
| 459 |
+
# }
|
| 460 |
+
# }
|
| 461 |
+
# }
|
| 462 |
+
#
|
| 463 |
+
# # Create the index with the specified settings and mappings
|
| 464 |
+
# es.indices.create(index=index_name, mappings=mappings, settings=settings)
|
| 465 |
+
# return cls(client=es, index_name=index_name)
|
| 466 |
+
#
|
| 467 |
+
# def add_texts(
|
| 468 |
+
# self,
|
| 469 |
+
# texts: Iterable[str],
|
| 470 |
+
# refresh_indices: bool = True,
|
| 471 |
+
# ) -> List[str]:
|
| 472 |
+
# """Run more texts through the embeddings and add to the retriever.
|
| 473 |
+
#
|
| 474 |
+
# Args:
|
| 475 |
+
# texts: Iterable of strings to add to the retriever.
|
| 476 |
+
# refresh_indices: bool to refresh ElasticSearch indices
|
| 477 |
+
#
|
| 478 |
+
# Returns:
|
| 479 |
+
# List of ids from adding the texts into the retriever.
|
| 480 |
+
# """
|
| 481 |
+
# try:
|
| 482 |
+
# from elasticsearch.helpers import bulk
|
| 483 |
+
# except ImportError:
|
| 484 |
+
# raise ImportError(
|
| 485 |
+
# "Could not import elasticsearch python package. "
|
| 486 |
+
# "Please install it with `pip install elasticsearch`."
|
| 487 |
+
# )
|
| 488 |
+
# requests = []
|
| 489 |
+
# ids = []
|
| 490 |
+
# for i, text in enumerate(texts):
|
| 491 |
+
# _id = str(uuid.uuid4())
|
| 492 |
+
# request = {
|
| 493 |
+
# "_op_type": "index",
|
| 494 |
+
# "_index": self.index_name,
|
| 495 |
+
# "content": text,
|
| 496 |
+
# "_id": _id,
|
| 497 |
+
# }
|
| 498 |
+
# ids.append(_id)
|
| 499 |
+
# requests.append(request)
|
| 500 |
+
# bulk(self.client, requests)
|
| 501 |
+
#
|
| 502 |
+
# if refresh_indices:
|
| 503 |
+
# self.client.indices.refresh(index=self.index_name)
|
| 504 |
+
# return ids
|
| 505 |
+
#
|
| 506 |
+
# def _get_relevant_documents(
|
| 507 |
+
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
| 508 |
+
# ) -> List[Document]:
|
| 509 |
+
# query_dict = {"query": {"match": {"content": query}}}
|
| 510 |
+
# res = self.client.search(index=self.index_name, body=query_dict)
|
| 511 |
+
#
|
| 512 |
+
# docs = []
|
| 513 |
+
# for r in res["hits"]["hits"]:
|
| 514 |
+
# docs.append(Document(page_content=r["_source"]["content"]))
|
| 515 |
+
# return docs
|
| 516 |
+
############################################################################################################
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
############################################################################################################
|
| 520 |
+
# Multi Query Retriever
|
| 521 |
+
# class MultiQueryRetriever(BaseRetriever):
|
| 522 |
+
# """Given a query, use an LLM to write a set of queries.
|
| 523 |
+
#
|
| 524 |
+
# Retrieve docs for each query. Return the unique union of all retrieved docs.
|
| 525 |
+
# """
|
| 526 |
+
#
|
| 527 |
+
# retriever: BaseRetriever
|
| 528 |
+
# llm_chain: Runnable
|
| 529 |
+
# verbose: bool = True
|
| 530 |
+
# parser_key: str = "lines"
|
| 531 |
+
# """DEPRECATED. parser_key is no longer used and should not be specified."""
|
| 532 |
+
# include_original: bool = False
|
| 533 |
+
# """Whether to include the original query in the list of generated queries."""
|
| 534 |
+
#
|
| 535 |
+
# @classmethod
|
| 536 |
+
# def from_llm(
|
| 537 |
+
# cls,
|
| 538 |
+
# retriever: BaseRetriever,
|
| 539 |
+
# llm: BaseLanguageModel,
|
| 540 |
+
# prompt: BasePromptTemplate = DEFAULT_QUERY_PROMPT,
|
| 541 |
+
# parser_key: Optional[str] = None,
|
| 542 |
+
# include_original: bool = False,
|
| 543 |
+
# ) -> "MultiQueryRetriever":
|
| 544 |
+
# """Initialize from llm using default template.
|
| 545 |
+
#
|
| 546 |
+
# Args:
|
| 547 |
+
# retriever: retriever to query documents from
|
| 548 |
+
# llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
| 549 |
+
# prompt: The prompt which aims to generate several different versions
|
| 550 |
+
# of the given user query
|
| 551 |
+
# include_original: Whether to include the original query in the list of
|
| 552 |
+
# generated queries.
|
| 553 |
+
#
|
| 554 |
+
# Returns:
|
| 555 |
+
# MultiQueryRetriever
|
| 556 |
+
# """
|
| 557 |
+
# output_parser = LineListOutputParser()
|
| 558 |
+
# llm_chain = prompt | llm | output_parser
|
| 559 |
+
# return cls(
|
| 560 |
+
# retriever=retriever,
|
| 561 |
+
# llm_chain=llm_chain,
|
| 562 |
+
# include_original=include_original,
|
| 563 |
+
# )
|
| 564 |
+
#
|
| 565 |
+
# async def _aget_relevant_documents(
|
| 566 |
+
# self,
|
| 567 |
+
# query: str,
|
| 568 |
+
# *,
|
| 569 |
+
# run_manager: AsyncCallbackManagerForRetrieverRun,
|
| 570 |
+
# ) -> List[Document]:
|
| 571 |
+
# """Get relevant documents given a user query.
|
| 572 |
+
#
|
| 573 |
+
# Args:
|
| 574 |
+
# query: user query
|
| 575 |
+
#
|
| 576 |
+
# Returns:
|
| 577 |
+
# Unique union of relevant documents from all generated queries
|
| 578 |
+
# """
|
| 579 |
+
# queries = await self.agenerate_queries(query, run_manager)
|
| 580 |
+
# if self.include_original:
|
| 581 |
+
# queries.append(query)
|
| 582 |
+
# documents = await self.aretrieve_documents(queries, run_manager)
|
| 583 |
+
# return self.unique_union(documents)
|
| 584 |
+
#
|
| 585 |
+
# async def agenerate_queries(
|
| 586 |
+
# self, question: str, run_manager: AsyncCallbackManagerForRetrieverRun
|
| 587 |
+
# ) -> List[str]:
|
| 588 |
+
# """Generate queries based upon user input.
|
| 589 |
+
#
|
| 590 |
+
# Args:
|
| 591 |
+
# question: user query
|
| 592 |
+
#
|
| 593 |
+
# Returns:
|
| 594 |
+
# List of LLM generated queries that are similar to the user input
|
| 595 |
+
# """
|
| 596 |
+
# response = await self.llm_chain.ainvoke(
|
| 597 |
+
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
| 598 |
+
# )
|
| 599 |
+
# if isinstance(self.llm_chain, LLMChain):
|
| 600 |
+
# lines = response["text"]
|
| 601 |
+
# else:
|
| 602 |
+
# lines = response
|
| 603 |
+
# if self.verbose:
|
| 604 |
+
# logger.info(f"Generated queries: {lines}")
|
| 605 |
+
# return lines
|
| 606 |
+
#
|
| 607 |
+
# async def aretrieve_documents(
|
| 608 |
+
# self, queries: List[str], run_manager: AsyncCallbackManagerForRetrieverRun
|
| 609 |
+
# ) -> List[Document]:
|
| 610 |
+
# """Run all LLM generated queries.
|
| 611 |
+
#
|
| 612 |
+
# Args:
|
| 613 |
+
# queries: query list
|
| 614 |
+
#
|
| 615 |
+
# Returns:
|
| 616 |
+
# List of retrieved Documents
|
| 617 |
+
# """
|
| 618 |
+
# document_lists = await asyncio.gather(
|
| 619 |
+
# *(
|
| 620 |
+
# self.retriever.ainvoke(
|
| 621 |
+
# query, config={"callbacks": run_manager.get_child()}
|
| 622 |
+
# )
|
| 623 |
+
# for query in queries
|
| 624 |
+
# )
|
| 625 |
+
# )
|
| 626 |
+
# return [doc for docs in document_lists for doc in docs]
|
| 627 |
+
#
|
| 628 |
+
# def _get_relevant_documents(
|
| 629 |
+
# self,
|
| 630 |
+
# query: str,
|
| 631 |
+
# *,
|
| 632 |
+
# run_manager: CallbackManagerForRetrieverRun,
|
| 633 |
+
# ) -> List[Document]:
|
| 634 |
+
# """Get relevant documents given a user query.
|
| 635 |
+
#
|
| 636 |
+
# Args:
|
| 637 |
+
# query: user query
|
| 638 |
+
#
|
| 639 |
+
# Returns:
|
| 640 |
+
# Unique union of relevant documents from all generated queries
|
| 641 |
+
# """
|
| 642 |
+
# queries = self.generate_queries(query, run_manager)
|
| 643 |
+
# if self.include_original:
|
| 644 |
+
# queries.append(query)
|
| 645 |
+
# documents = self.retrieve_documents(queries, run_manager)
|
| 646 |
+
# return self.unique_union(documents)
|
| 647 |
+
#
|
| 648 |
+
# def generate_queries(
|
| 649 |
+
# self, question: str, run_manager: CallbackManagerForRetrieverRun
|
| 650 |
+
# ) -> List[str]:
|
| 651 |
+
# """Generate queries based upon user input.
|
| 652 |
+
#
|
| 653 |
+
# Args:
|
| 654 |
+
# question: user query
|
| 655 |
+
#
|
| 656 |
+
# Returns:
|
| 657 |
+
# List of LLM generated queries that are similar to the user input
|
| 658 |
+
# """
|
| 659 |
+
# response = self.llm_chain.invoke(
|
| 660 |
+
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
| 661 |
+
# )
|
| 662 |
+
# if isinstance(self.llm_chain, LLMChain):
|
| 663 |
+
# lines = response["text"]
|
| 664 |
+
# else:
|
| 665 |
+
# lines = response
|
| 666 |
+
# if self.verbose:
|
| 667 |
+
# logger.info(f"Generated queries: {lines}")
|
| 668 |
+
# return lines
|
| 669 |
+
#
|
| 670 |
+
# def retrieve_documents(
|
| 671 |
+
# self, queries: List[str], run_manager: CallbackManagerForRetrieverRun
|
| 672 |
+
# ) -> List[Document]:
|
| 673 |
+
# """Run all LLM generated queries.
|
| 674 |
+
#
|
| 675 |
+
# Args:
|
| 676 |
+
# queries: query list
|
| 677 |
+
#
|
| 678 |
+
# Returns:
|
| 679 |
+
# List of retrieved Documents
|
| 680 |
+
# """
|
| 681 |
+
# documents = []
|
| 682 |
+
# for query in queries:
|
| 683 |
+
# docs = self.retriever.invoke(
|
| 684 |
+
# query, config={"callbacks": run_manager.get_child()}
|
| 685 |
+
# )
|
| 686 |
+
# documents.extend(docs)
|
| 687 |
+
# return documents
|
| 688 |
+
#
|
| 689 |
+
# def unique_union(self, documents: List[Document]) -> List[Document]:
|
| 690 |
+
# """Get unique Documents.
|
| 691 |
+
#
|
| 692 |
+
# Args:
|
| 693 |
+
# documents: List of retrieved Documents
|
| 694 |
+
#
|
| 695 |
+
# Returns:
|
| 696 |
+
# List of unique retrieved Documents
|
| 697 |
+
# """
|
| 698 |
+
# return _unique_documents(documents)
|
| 699 |
+
############################################################################################################
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
############################################################################################################
|
| 709 |
+
# ElasticSearch Retriever
|
| 710 |
+
|
| 711 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
|
| 712 |
+
#
|
| 713 |
+
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
|