oceddyyy commited on
Commit
9762129
·
verified ·
1 Parent(s): 57dc3e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -57
app.py CHANGED
@@ -1,64 +1,64 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import json
2
+ from transformers import pipeline
3
  import gradio as gr
 
4
 
5
+ # Load question-generation and question-answering pipelines
6
+ qg_pipeline = pipeline("e2e-qg", model="valhalla/t5-small-qa-qg-hl")
7
+ qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
 
8
 
9
+ # Simple chunking: split on paragraphs (for demo)
10
+ def split_chunks(text, max_len=200):
11
+ paragraphs = [p.strip() for p in text.split("\n") if p.strip()]
12
+ chunks = []
13
+ for p in paragraphs:
14
+ # further split long paragraphs
15
+ words = p.split()
16
+ if len(words) <= max_len:
17
+ chunks.append(p)
18
+ else:
19
+ for i in range(0, len(words), max_len):
20
+ chunk = " ".join(words[i : i + max_len])
21
+ chunks.append(chunk)
22
+ return chunks
23
 
24
+ # Conversion function
25
+ def convert_text(raw_text):
26
+ chunks = split_chunks(raw_text)
27
+ qna_list = []
28
+ for chunk in chunks:
29
+ # Generate raw Q&A pairs
30
+ try:
31
+ candidates = qg_pipeline(chunk)
32
+ except Exception:
33
+ continue
34
+ for cand in candidates:
35
+ question = cand.get("question") or cand.get("Q")
36
+ if not question:
37
+ continue
38
+ # Refine answer using QA pipeline
39
+ ans = qa_pipeline({"question": question, "context": chunk})
40
+ answer = ans.get("answer", "").strip()
41
+ # Append result
42
+ qna_list.append({"question": question.strip(), "answer": answer})
43
+ # Deduplicate
44
+ unique = []
45
+ seen = set()
46
+ for qa in qna_list:
47
+ key = (qa['question'], qa['answer'])
48
+ if key not in seen:
49
+ unique.append(qa)
50
+ seen.add(key)
51
+ return json.dumps(unique, indent=2, ensure_ascii=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ # Gradio interface
54
+ def main():
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown("# Handbook Text to Q&A Converter")
57
+ input_text = gr.Textbox(lines=10, placeholder="Paste handbook text here...", label="Raw Text")
58
+ output_json = gr.Textbox(lines=10, label="Generated Q&A JSON")
59
+ convert_btn = gr.Button("Convert")
60
+ convert_btn.click(fn=convert_text, inputs=input_text, outputs=output_json)
61
+ demo.launch()
62
 
63
  if __name__ == "__main__":
64
+ main()