Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,112 Bytes
79cc514 162c36b 79cc514 fd625c4 79cc514 2f5372c 79cc514 fd625c4 79cc514 31c4dba fd625c4 ea88e6c d3e5665 79cc514 170b2d9 79cc514 ea88e6c 79cc514 31c4dba 98aae95 79cc514 ea88e6c 79cc514 31c4dba 79cc514 170b2d9 2f5372c 170b2d9 162c36b 170b2d9 162c36b 170b2d9 fd625c4 31c4dba 79cc514 1510936 170b2d9 79cc514 d2e532c 79cc514 170b2d9 162c36b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import spaces
import gradio as gr
import numpy as np
import gc
import torch
import torch.nn as nn
from PIL import Image, ImageDraw
from matplotlib import cm
from model_utils.extractor_dino import ViTExtractor
from model_utils.projection_network import AggregationNetwork, DummyAggregationNetwork
def resize(img, target_res=224, resize=True, to_pil=True, edge=False, sampling_filter='lanczos'):
filt = Image.Resampling.LANCZOS if sampling_filter == 'lanczos' else Image.Resampling.NEAREST
original_width, original_height = img.size
original_channels = len(img.getbands())
if not edge:
canvas = np.zeros([target_res, target_res, 3], dtype=np.uint8)
if original_channels == 1:
canvas = np.zeros([target_res, target_res], dtype=np.uint8)
if original_height <= original_width:
if resize:
img = img.resize((target_res, int(np.around(target_res * original_height / original_width))), filt)
width, height = img.size
img = np.asarray(img)
canvas[(width - height) // 2: (width + height) // 2] = img
else:
if resize:
img = img.resize((int(np.around(target_res * original_width / original_height)), target_res), filt)
width, height = img.size
img = np.asarray(img)
canvas[:, (height - width) // 2: (height + width) // 2] = img
else:
if original_height <= original_width:
if resize:
img = img.resize((target_res, int(np.around(target_res * original_height / original_width))), filt)
width, height = img.size
img = np.asarray(img)
top_pad = (target_res - height) // 2
bottom_pad = target_res - height - top_pad
img = np.pad(img, pad_width=[(top_pad, bottom_pad), (0, 0), (0, 0)], mode='edge')
else:
if resize:
img = img.resize((int(np.around(target_res * original_width / original_height)), target_res), filt)
width, height = img.size
img = np.asarray(img)
left_pad = (target_res - width) // 2
right_pad = target_res - width - left_pad
img = np.pad(img, pad_width=[(0, 0), (left_pad, right_pad), (0, 0)], mode='edge')
canvas = img
if to_pil:
canvas = Image.fromarray(canvas)
return canvas
# βββ Feature extraction ββββββββββββββββββββββββββββββββββββββββββ
@spaces.GPU(duration=20)
def get_processed_features_dino(num_patches, img,use_dummy):
with torch.no_grad():
batch = extractor_vit.preprocess_pil(img)
features_dino = extractor_vit.extract_descriptors(batch.to(extractor_vit.device), layer=11, facet='token') \
.permute(0,1,3,2) \
.reshape(1, -1, num_patches, num_patches)
if use_dummy == "DINOv2":
desc = aggre_net_dummy(features_dino)
else:
desc = aggre_net(features_dino)
norms = torch.linalg.norm(desc, dim=1, keepdim=True)
desc = desc / (norms + 1e-8)
desc = desc.cpu()
# del batch, features_dino
gc.collect()
torch.cuda.empty_cache()
return desc # shape [1, C, num_patches, num_patches]
# βββ Similarity computation βββββββββββββββββββββββββββββββββββββββ
def get_sim(
coord: tuple[int,int],
feat1: torch.Tensor,
feat2: torch.Tensor,
img_size: int = 420
) -> np.ndarray:
"""
Upsamples the DINO features to `img_size`, then computes cosineβsimilarity
between the feature at `coord` in source and every spatial location in target.
"""
y, x = coord # row, col
# Upsample both feature maps to [1, C, img_size, img_size]
src_ft = upsampler(feat1) # [1, C, img_size, img_size]
trg_ft = upsampler(feat2)
# Extract the Cβdim vector at the clicked location
C = src_ft.size(1)
src_vec = src_ft[0, :, y, x].view(1, C, 1, 1) # [1, C, 1, 1]
# Cosine similarity along channelβdim
cos = nn.CosineSimilarity(dim=1)
cos_map = cos(src_vec, trg_ft)[0] # [img_size, img_size]
return cos_map.cpu().numpy()
# βββ Drawing helper βββββββββββββββββββββββββββββββββββββββββββββββ
def draw_point(img_arr: np.ndarray, x: int, y: int, size: int, color=(255,0,0)) -> np.ndarray:
pil = Image.fromarray(img_arr)
draw = ImageDraw.Draw(pil)
r = size // 2
draw.ellipse((x-r, y-r, x+r, y+r), fill=color, outline=color)
return np.array(pil)
# βββ Featureβupdating callback βββββββββββββββββββββββββββββββββββ
def update_features(
img: Image,
num_patches,
use_dummy
):
gc.collect()
torch.cuda.empty_cache()
"""
Given a PIL image, returns:
1) the same PIL image (so it can be displayed)
2) its DINO descriptor tensor, stored in a gr.State
"""
if img is None:
return None, None, None
img = resize(img, target_res=target_res, resize=True, to_pil=True)
feat = get_processed_features_dino(num_patches, img=img,use_dummy=use_dummy)
return img, feat.cpu(), Image.fromarray(np.array(img))
# βββ Click handler βββββββββββββββββββββββββββββββββββββββββββββββ
def on_select(
source_pil: Image,
target_pil: Image,
feat1: torch.Tensor,
feat2: torch.Tensor,
alpha: float,
scatter_size: int,
or_tgt_img: Image,
or_src_img: Image,
sel: gr.SelectData
):
gc.collect()
torch.cuda.empty_cache()
# Convert to numpy arrays
src_arr = np.array(or_src_img)
tgt_arr = np.array(or_tgt_img)
# Get click coords (row, col)
y, x = sel.index
src_marked = draw_point(src_arr, y, x, scatter_size)
# Compute similarity map
sim_map = get_sim((x, y), feat1, feat2, img_size=target_res)
mn, mx = sim_map.min(), sim_map.max()
sim_norm = (sim_map - mn) / ((mx - mn) + 1e-12)
# Build RGBA heatmap
heat = cm.viridis(sim_norm) # HΓWΓ4
heat[..., 3] = sim_norm * alpha # alpha channel
# Composite over fresh target
tgt_f = tgt_arr.astype(np.float32) / 255.0
comp = heat[..., :3] * heat[..., 3:4] + tgt_f * (1 - heat[..., 3:4])
overlay = (comp * 255).astype(np.uint8)
# Draw a red dot at the best match
my, mx_ = np.unravel_index(sim_map.argmax(), sim_map.shape)
overlay_marked = draw_point(overlay, mx_, my, scatter_size)
return src_marked,overlay_marked
def reload_img(
or_src_img: Image,
or_tgt_img: Image,
):
return or_src_img,or_tgt_img
# βββ Configuration βββββββββββββββββββββββββββββββββββββββββββββββ
num_patches = 45
target_res = num_patches * 14
ckpt_file = "./ckpts/dino_spair_0300.pth"
# βββ Model setup βββββββββββββββββββββββββββββββββββββββββββββββββ
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
aggre_net = AggregationNetwork(feature_dims=[768], projection_dim=768, device=device)
aggre_net.load_pretrained_weights(torch.load(ckpt_file, map_location=device))
aggre_net_dummy = DummyAggregationNetwork()
extractor_vit = ViTExtractor('dinov2_vitb14', stride=14, device=device)
aggre_net = aggre_net.eval()
extractor_vit.model.eval()
upsampler = nn.Upsample(size=(target_res, target_res), mode='bilinear', align_corners=False)
gc.collect()
torch.cuda.empty_cache()
# βββ Build Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks() as demo:
# Hidden states to hold features
feat1_state = gr.State()
feat2_state = gr.State()
or_tgt_img = gr.State()
or_src_img = gr.State()
# Introduction text box
intro_text = gr.Markdown("""
## Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels
[Project Page](https://genintel.github.io/DIY-SC) | [GitHub Repository](https://github.com/odunkel/DIY-SC)
Welcome to the DIY-SC demo!
Upload two images and select a keypoint in the source image. This demo will compute and visualize the feature similarity map and a corresponding point in the target image.
You can choose between the DIY-SC (DINOv2) or the DINOv2 feature extractor.
""")
# Image upload / display components
with gr.Row():
src = gr.Image(interactive=True, type="pil", label="Source Image")
tgt = gr.Image(interactive=True, type="pil", label="Target Image")
# Controls
alpha = gr.State(0.7)
scatter = gr.State(10)
use_dummy = gr.Radio(["DIY-SC", "DINOv2"], value="DIY-SC", label="Feature Extractor")
src.input(
fn=update_features,
inputs=[src, gr.State(num_patches),use_dummy],
outputs=[src, feat1_state,or_src_img,]
)
tgt.input(
fn=update_features,
inputs=[tgt, gr.State(num_patches),use_dummy],
outputs=[tgt, feat2_state,or_tgt_img]
)
use_dummy.change(
fn=update_features,
inputs=[or_src_img, gr.State(num_patches), use_dummy],
outputs=[src, feat1_state, or_src_img]
)
use_dummy.change(
fn=update_features,
inputs=[or_tgt_img, gr.State(num_patches), use_dummy],
outputs=[tgt, feat2_state, or_tgt_img]
)
src.select(
fn=on_select,
inputs=[src, tgt, feat1_state, feat2_state, alpha, scatter,or_tgt_img,or_src_img],
outputs=[src,tgt]
)
if __name__ == "__main__":
demo.launch()
|