File size: 5,551 Bytes
9f54a3b
71ec4a8
9f54a3b
0e00146
b4026e6
 
8f7d62b
a9c7401
71ec4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092b5a
71ec4a8
 
b4026e6
71ec4a8
 
8f7d62b
b4026e6
 
 
 
8f7d62b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ec4a8
 
b4026e6
8f7d62b
 
 
 
 
b4026e6
8f7d62b
71ec4a8
 
8092b5a
8f7d62b
8092b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
e13723a
8f7d62b
b4026e6
8f7d62b
 
 
b4026e6
8f7d62b
 
 
b4026e6
8f7d62b
 
b4026e6
 
 
 
8f7d62b
b4026e6
8f7d62b
b4026e6
8f7d62b
b4026e6
8f7d62b
71ec4a8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
import requests
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# Function to call the Together API with the provided model
def call_ai_model(all_message):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": all_message}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Streamlit app layout
st.title("Impact of Climate on Sports Using AI")
st.write("Predict and mitigate the impacts of climate change on sports performance and infrastructure.")

# Climate data inputs
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)

# Athlete-specific inputs
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
performance_history = st.text_area("Athlete Performance History:")

# Infrastructure characteristics
facility_type = st.selectbox("Facility Type:", ["Stadium", "Gymnasium", "Outdoor Field"])
facility_age = st.number_input("Facility Age (years):", min_value=0, max_value=100, value=10)
materials_used = st.text_input("Materials Used in Construction:")

# Socio-economic data
community_size = st.number_input("Community Size:", min_value=0, value=1000)
economic_impact_estimate = st.text_area("Estimate Economic Impact (Event cancellations, Facility damage costs):")

if st.button("Generate Prediction"):
    all_message = (
        f"Given the climate conditions: Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
        f"UV Index {uv_index}, Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
        f"Atmospheric Pressure {atmospheric_pressure} hPa. For athlete (Age: {age}, Sport: {sport}), "
        f"Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used}). "
        f"Assess the impact on sports performance, infrastructure, and socio-economic aspects."
    )

    try:
        with st.spinner("Generating response..."):
            response = call_ai_model(all_message)

            generated_text = ""
            for line in response.iter_lines():
                if line:
                    line_content = line.decode('utf-8')
                    if line_content.startswith("data: "):
                        line_content = line_content[6:]  # Strip "data: " prefix
                    try:
                        json_data = json.loads(line_content)
                        if "choices" in json_data:
                            delta = json_data["choices"][0]["delta"]
                            if "content" in delta:
                                generated_text += delta["content"]
                    except json.JSONDecodeError:
                        continue

            st.success("Response generated!")

            # Display the impact summary and conclusions
            st.markdown(f"**Impact Summary:** {generated_text.strip()}")
            st.markdown("**Conclusion:** Tailoring strategies based on these climate conditions can significantly enhance performance and infrastructure resilience.")

            # Data Visualization
            st.subheader("Climate Condition Impacts Visualization")
            # Example: Displaying data in a table
            data = {
                'Condition': ['Temperature', 'Humidity', 'Wind Speed', 'UV Index', 'Air Quality Index', 'Precipitation', 'Atmospheric Pressure'],
                'Value': [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
            }
            df = pd.DataFrame(data)
            st.table(df)

            # Plotting a bar chart for climate variables
            fig, ax = plt.subplots()
            ax.bar(data['Condition'], data['Value'], color=['blue', 'green', 'orange', 'red', 'purple', 'gray', 'cyan'])
            ax.set_ylabel('Value')
            ax.set_title('Climate Condition Impacts')
            st.pyplot(fig)

    except ValueError as ve:
        st.error(f"Configuration error: {ve}")
    except requests.exceptions.RequestException as re:
        st.error(f"Request error: {re}")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")