Spaces:
Sleeping
Sleeping
File size: 5,551 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 b4026e6 8f7d62b a9c7401 71ec4a8 8092b5a 71ec4a8 b4026e6 71ec4a8 8f7d62b b4026e6 8f7d62b 71ec4a8 b4026e6 8f7d62b b4026e6 8f7d62b 71ec4a8 8092b5a 8f7d62b 8092b5a e13723a 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b b4026e6 8f7d62b 71ec4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Function to call the Together API with the provided model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Streamlit app layout
st.title("Impact of Climate on Sports Using AI")
st.write("Predict and mitigate the impacts of climate change on sports performance and infrastructure.")
# Climate data inputs
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Athlete-specific inputs
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
performance_history = st.text_area("Athlete Performance History:")
# Infrastructure characteristics
facility_type = st.selectbox("Facility Type:", ["Stadium", "Gymnasium", "Outdoor Field"])
facility_age = st.number_input("Facility Age (years):", min_value=0, max_value=100, value=10)
materials_used = st.text_input("Materials Used in Construction:")
# Socio-economic data
community_size = st.number_input("Community Size:", min_value=0, value=1000)
economic_impact_estimate = st.text_area("Estimate Economic Impact (Event cancellations, Facility damage costs):")
if st.button("Generate Prediction"):
all_message = (
f"Given the climate conditions: Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
f"UV Index {uv_index}, Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
f"Atmospheric Pressure {atmospheric_pressure} hPa. For athlete (Age: {age}, Sport: {sport}), "
f"Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used}). "
f"Assess the impact on sports performance, infrastructure, and socio-economic aspects."
)
try:
with st.spinner("Generating response..."):
response = call_ai_model(all_message)
generated_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
generated_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Response generated!")
# Display the impact summary and conclusions
st.markdown(f"**Impact Summary:** {generated_text.strip()}")
st.markdown("**Conclusion:** Tailoring strategies based on these climate conditions can significantly enhance performance and infrastructure resilience.")
# Data Visualization
st.subheader("Climate Condition Impacts Visualization")
# Example: Displaying data in a table
data = {
'Condition': ['Temperature', 'Humidity', 'Wind Speed', 'UV Index', 'Air Quality Index', 'Precipitation', 'Atmospheric Pressure'],
'Value': [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
}
df = pd.DataFrame(data)
st.table(df)
# Plotting a bar chart for climate variables
fig, ax = plt.subplots()
ax.bar(data['Condition'], data['Value'], color=['blue', 'green', 'orange', 'red', 'purple', 'gray', 'cyan'])
ax.set_ylabel('Value')
ax.set_title('Climate Condition Impacts')
st.pyplot(fig)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|