Spaces:
Sleeping
Sleeping
File size: 4,922 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 b4026e6 251086d a9c7401 f689a87 71ec4a8 8092b5a 71ec4a8 f689a87 71ec4a8 f689a87 b4026e6 8f7d62b 251086d e897423 71ec4a8 b4026e6 f689a87 251086d 9f08dba b4026e6 8f7d62b 71ec4a8 9f08dba 8092b5a 8f7d62b 8092b5a e13723a 8f7d62b b4026e6 f689a87 b4026e6 f689a87 b4026e6 251086d 71ec4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
# Function to call the Together AI model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")
# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Geographic location input
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
if st.button("Generate Prediction"):
all_message = (
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
f"Location: Latitude {latitude}, Longitude {longitude}."
f"After analyzing that I want you to visualize the data in the best way possible, might be in a table, using a chart or any other way so that it could be easy to understand"
)
try:
with st.spinner("Analyzing climate conditions... Generating predictions... Preparing visualizations..."):
response = call_ai_model(all_message)
generated_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
generated_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Response generated!")
# Prepare data for visualization
results_data = {
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
}
results_df = pd.DataFrame(results_data)
# Display results in a table
st.subheader("Results Summary")
st.table(results_df)
# Display prediction
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
st.markdown(generated_text.strip())
# Generate a simple chart
fig, ax = plt.subplots()
ax.bar(results_data['Condition'], results_data['Value'])
ax.set_ylabel('Values')
ax.set_title('Climate Conditions Impact')
st.pyplot(fig)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|