File size: 4,922 Bytes
9f54a3b
71ec4a8
9f54a3b
0e00146
b4026e6
251086d
a9c7401
f689a87
71ec4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092b5a
71ec4a8
 
f689a87
 
71ec4a8
f689a87
b4026e6
 
 
 
8f7d62b
 
 
 
251086d
e897423
 
 
71ec4a8
b4026e6
f689a87
 
 
251086d
9f08dba
b4026e6
8f7d62b
71ec4a8
9f08dba
8092b5a
8f7d62b
8092b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
e13723a
8f7d62b
b4026e6
f689a87
 
 
 
b4026e6
f689a87
 
 
 
 
 
 
 
 
b4026e6
251086d
 
 
 
 
 
 
71ec4a8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import streamlit as st
import requests
import os
import json
import pandas as pd
import matplotlib.pyplot as plt

# Function to call the Together AI model
def call_ai_model(all_message):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": all_message}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")

# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)

# Geographic location input
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)

if st.button("Generate Prediction"):
    all_message = (
        f"Assess the impact on sports performance and infrastructure based on climate conditions: "
        f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
        f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
        f"Location: Latitude {latitude}, Longitude {longitude}."
        f"After analyzing that I want you to visualize the data in the best way possible, might be in a table, using a chart or any other way so that it could be easy to understand"
    )

    try:
        with st.spinner("Analyzing climate conditions... Generating predictions... Preparing visualizations..."):
            response = call_ai_model(all_message)

            generated_text = ""
            for line in response.iter_lines():
                if line:
                    line_content = line.decode('utf-8')
                    if line_content.startswith("data: "):
                        line_content = line_content[6:]  # Strip "data: " prefix
                    try:
                        json_data = json.loads(line_content)
                        if "choices" in json_data:
                            delta = json_data["choices"][0]["delta"]
                            if "content" in delta:
                                generated_text += delta["content"]
                    except json.JSONDecodeError:
                        continue

            st.success("Response generated!")

            # Prepare data for visualization
            results_data = {
                "Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
                "Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
            }
            results_df = pd.DataFrame(results_data)

            # Display results in a table
            st.subheader("Results Summary")
            st.table(results_df)

            # Display prediction
            st.markdown("**Predicted Impact on Performance and Infrastructure:**")
            st.markdown(generated_text.strip())

            # Generate a simple chart
            fig, ax = plt.subplots()
            ax.bar(results_data['Condition'], results_data['Value'])
            ax.set_ylabel('Values')
            ax.set_title('Climate Conditions Impact')
            st.pyplot(fig)

    except ValueError as ve:
        st.error(f"Configuration error: {ve}")
    except requests.exceptions.RequestException as re:
        st.error(f"Request error: {re}")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")