Spaces:
Sleeping
Sleeping
File size: 6,675 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 b4026e6 0c48822 251086d a9c7401 f689a87 71ec4a8 8092b5a 71ec4a8 f689a87 71ec4a8 f689a87 b4026e6 8f7d62b 251086d e897423 71ec4a8 b4026e6 f689a87 251086d 9f08dba b4026e6 8f7d62b 71ec4a8 0c48822 8092b5a 8f7d62b 8092b5a e13723a 8f7d62b b4026e6 f689a87 b4026e6 f689a87 b4026e6 e003f26 251086d e003f26 251086d e003f26 251086d 71ec4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import time
import matplotlib.pyplot as plt
# Function to call the Together AI model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status() # Ensure HTTP request was successful
return response
# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")
# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
# Geographic location input
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
if st.button("Generate Prediction"):
all_message = (
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
f"Location: Latitude {latitude}, Longitude {longitude}."
f"After analyzing that I want you to visualize the data in the best way possible, might be in a table, using a chart or any other way so that it could be easy to understand"
)
try:
placeholder = st.empty()
with placeholder.container():
st.info("Collecting climate data...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Analyzing temperature data...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Evaluating humidity levels...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Assessing wind conditions...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Checking UV index...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Measuring air quality...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Calculating precipitation effects...")
time.sleep(1)
placeholder.empty()
with placeholder.container():
st.info("Analyzing atmospheric pressure...")
time.sleep(1)
placeholder.empty()
with st.spinner("Finalizing predictions..."):
response = call_ai_model(all_message)
generated_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:] # Strip "data: " prefix
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
generated_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Response generated!")
# Prepare data for visualization
results_data = {
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
}
results_df = pd.DataFrame(results_data)
# Display results in a table
st.subheader("Results Summary")
st.table(results_df)
# Display prediction
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
st.markdown(generated_text.strip())
# Select conditions to visualize
conditions = ["Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"]
selected_conditions = st.multiselect("Select conditions to visualize against Temperature:", conditions, default=conditions)
# Generate a line chart to show the relationship between temperature and selected conditions
fig, ax = plt.subplots()
for condition in selected_conditions:
ax.plot(["Temperature", condition], [temperature, results_data["Value"][results_data["Condition"].index(condition)]], marker='o', label=condition)
ax.set_ylabel('Values')
ax.set_title('Relationship Between Temperature and Selected Conditions')
ax.legend()
st.pyplot(fig)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
|