ogegadavis254 commited on
Commit
0efa70b
·
verified ·
1 Parent(s): fa025b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -24
app.py CHANGED
@@ -36,7 +36,6 @@ def call_ai_model(all_message):
36
 
37
  # Function to get performance data from AI
38
  def get_performance_data(conditions):
39
- url = "https://api.together.xyz/v1/chat/completions"
40
  all_message = (
41
  f"Provide the expected sports performance score at conditions: "
42
  f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
@@ -60,7 +59,9 @@ def get_performance_data(conditions):
60
  except json.JSONDecodeError:
61
  continue
62
 
63
- return generated_text.strip()
 
 
64
 
65
  # Streamlit app layout
66
  st.title("Climate Impact on Sports Performance")
@@ -89,7 +90,7 @@ if st.button("Generate Prediction"):
89
 
90
  try:
91
  with st.spinner("Generating predictions..."):
92
- # Call AI model to get initial prediction and qualitative assessment
93
  qualitative_analysis = (
94
  f"Assess the impact on sports performance at conditions: "
95
  f"Temperature {temperature}°C, Humidity {humidity}%, "
@@ -100,7 +101,7 @@ if st.button("Generate Prediction"):
100
  qualitative_result = call_ai_model(qualitative_analysis)
101
 
102
  # Get performance score for specified conditions
103
- performance_score_text = get_performance_data(conditions)
104
 
105
  st.success("Predictions generated.")
106
 
@@ -110,33 +111,22 @@ if st.button("Generate Prediction"):
110
 
111
  # Display performance score
112
  st.subheader("Performance Score")
113
- st.write(f"Predicted Performance Score: {performance_score_text}")
114
 
115
  # Plotting the data
116
  st.subheader("Performance Score vs Climate Conditions")
117
 
118
- # Define some dummy data for the climate conditions
119
  climate_conditions = list(conditions.keys())
120
  climate_values = list(conditions.values())
121
 
122
- # Prepare data for plotting (replace with actual performance scores from API)
123
- performance_scores = [80, 75, 85, 70, 78, 82, 72] # Replace with actual data from API
124
-
125
- fig, ax1 = plt.subplots()
126
-
127
- # Plot climate conditions on the primary y-axis
128
- ax1.plot(climate_conditions, climate_values, marker='o', color='b', label='Climate Conditions')
129
- ax1.set_xlabel('Climate Conditions')
130
- ax1.set_ylabel('Values', color='b')
131
- ax1.tick_params(axis='y', labelcolor='b')
132
-
133
- # Create a secondary y-axis for performance score
134
- ax2 = ax1.twinx()
135
- ax2.plot(['Performance Score'], performance_scores, marker='s', color='r', label='Performance Score')
136
- ax2.set_ylabel('Performance Score', color='r')
137
- ax2.tick_params(axis='y', labelcolor='r')
138
-
139
- fig.tight_layout()
140
  st.pyplot(fig)
141
 
142
  except ValueError as ve:
 
36
 
37
  # Function to get performance data from AI
38
  def get_performance_data(conditions):
 
39
  all_message = (
40
  f"Provide the expected sports performance score at conditions: "
41
  f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
 
59
  except json.JSONDecodeError:
60
  continue
61
 
62
+ # Example: Replace with actual data from API
63
+ performance_scores = [75, 80, 70, 85, 78, 72, 82] # Replace with actual data from API
64
+ return performance_scores
65
 
66
  # Streamlit app layout
67
  st.title("Climate Impact on Sports Performance")
 
90
 
91
  try:
92
  with st.spinner("Generating predictions..."):
93
+ # Call AI model to get qualitative analysis
94
  qualitative_analysis = (
95
  f"Assess the impact on sports performance at conditions: "
96
  f"Temperature {temperature}°C, Humidity {humidity}%, "
 
101
  qualitative_result = call_ai_model(qualitative_analysis)
102
 
103
  # Get performance score for specified conditions
104
+ performance_scores = get_performance_data(conditions)
105
 
106
  st.success("Predictions generated.")
107
 
 
111
 
112
  # Display performance score
113
  st.subheader("Performance Score")
114
+ st.write(f"Predicted Performance Scores: {performance_scores}")
115
 
116
  # Plotting the data
117
  st.subheader("Performance Score vs Climate Conditions")
118
 
119
+ # Define climate conditions for plotting
120
  climate_conditions = list(conditions.keys())
121
  climate_values = list(conditions.values())
122
 
123
+ # Plotting performance score against climate conditions
124
+ fig, ax = plt.subplots()
125
+ ax.plot(climate_conditions, performance_scores, marker='o', linestyle='-', color='b')
126
+ ax.set_xlabel('Climate Conditions')
127
+ ax.set_ylabel('Performance Score')
128
+ ax.set_title('Performance Score vs Climate Conditions')
129
+ ax.grid(True)
 
 
 
 
 
 
 
 
 
 
 
130
  st.pyplot(fig)
131
 
132
  except ValueError as ve: