Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -35,34 +35,31 @@ def call_ai_model(all_message):
|
|
35 |
|
36 |
return response
|
37 |
|
38 |
-
# Function to
|
39 |
-
def
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
performance_data.append(float(performance_value.strip()))
|
64 |
-
|
65 |
-
return performance_data
|
66 |
|
67 |
# Streamlit app layout
|
68 |
st.title("Climate Impact on Sports Performance and Infrastructure")
|
@@ -77,114 +74,86 @@ air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value
|
|
77 |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
78 |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
79 |
|
80 |
-
#
|
81 |
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
|
82 |
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if st.button("Generate Prediction"):
|
85 |
all_message = (
|
86 |
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
|
87 |
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
|
88 |
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
|
89 |
-
f"Location: Latitude {latitude}, Longitude {longitude}."
|
90 |
-
f"
|
91 |
)
|
92 |
|
93 |
try:
|
94 |
-
|
95 |
-
|
96 |
-
with placeholder.container():
|
97 |
-
st.info("Collecting climate data...")
|
98 |
-
time.sleep(1)
|
99 |
-
placeholder.empty()
|
100 |
-
|
101 |
-
with placeholder.container():
|
102 |
-
st.info("Analyzing temperature data...")
|
103 |
-
time.sleep(1)
|
104 |
-
placeholder.empty()
|
105 |
-
|
106 |
-
with placeholder.container():
|
107 |
-
st.info("Evaluating humidity levels...")
|
108 |
-
time.sleep(1)
|
109 |
-
placeholder.empty()
|
110 |
-
|
111 |
-
with placeholder.container():
|
112 |
-
st.info("Assessing wind conditions...")
|
113 |
-
time.sleep(1)
|
114 |
-
placeholder.empty()
|
115 |
|
116 |
-
|
117 |
-
st.info("Checking UV index...")
|
118 |
-
time.sleep(1)
|
119 |
-
placeholder.empty()
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
time.sleep(1)
|
134 |
-
placeholder.empty()
|
135 |
-
|
136 |
-
with st.spinner("Finalizing predictions..."):
|
137 |
-
response = call_ai_model(all_message)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
if line:
|
142 |
-
line_content = line.decode('utf-8')
|
143 |
-
if line_content.startswith("data: "):
|
144 |
-
line_content = line_content[6:] # Strip "data: " prefix
|
145 |
-
try:
|
146 |
-
json_data = json.loads(line_content)
|
147 |
-
if "choices" in json_data:
|
148 |
-
delta = json_data["choices"][0]["delta"]
|
149 |
-
if "content" in delta:
|
150 |
-
generated_text += delta["content"]
|
151 |
-
except json.JSONDecodeError:
|
152 |
-
continue
|
153 |
-
|
154 |
-
st.success("Response generated!")
|
155 |
-
|
156 |
-
# Prepare data for visualization
|
157 |
-
results_data = {
|
158 |
-
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
|
159 |
-
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
|
160 |
-
}
|
161 |
-
results_df = pd.DataFrame(results_data)
|
162 |
-
|
163 |
-
# Display results in a table
|
164 |
-
st.subheader("Results Summary")
|
165 |
-
st.table(results_df)
|
166 |
-
|
167 |
-
# Display prediction
|
168 |
-
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
|
169 |
-
st.markdown(generated_text.strip())
|
170 |
-
|
171 |
-
# Generate performance data for different temperatures
|
172 |
-
temp_range = [temperature - 5, temperature, temperature + 5]
|
173 |
-
performance_values = generate_performance_data(temp_range)
|
174 |
-
|
175 |
-
# Create a dataframe for performance values
|
176 |
-
performance_df = pd.DataFrame({
|
177 |
-
"Temperature": temp_range,
|
178 |
-
"Performance": performance_values
|
179 |
-
})
|
180 |
-
|
181 |
-
# Generate a line chart to show the relationship between temperature and performance
|
182 |
fig, ax = plt.subplots()
|
183 |
-
ax.plot(
|
184 |
ax.set_xlabel('Temperature (°C)')
|
185 |
-
ax.set_ylabel('Performance')
|
186 |
-
ax.set_title('
|
187 |
-
ax.legend()
|
188 |
st.pyplot(fig)
|
189 |
|
190 |
except ValueError as ve:
|
|
|
35 |
|
36 |
return response
|
37 |
|
38 |
+
# Function to request numerical performance data from AI
|
39 |
+
def get_performance_data(temperature):
|
40 |
+
all_message = (
|
41 |
+
f"Provide the expected sports performance value (as a numerical score) at a temperature of {temperature}°C."
|
42 |
+
)
|
43 |
+
response = call_ai_model(all_message)
|
44 |
+
generated_text = ""
|
45 |
+
for line in response.iter_lines():
|
46 |
+
if line:
|
47 |
+
line_content = line.decode('utf-8')
|
48 |
+
if line_content.startswith("data: "):
|
49 |
+
line_content = line_content[6:] # Strip "data: " prefix
|
50 |
+
try:
|
51 |
+
json_data = json.loads(line_content)
|
52 |
+
if "choices" in json_data:
|
53 |
+
delta = json_data["choices"][0]["delta"]
|
54 |
+
if "content" in delta:
|
55 |
+
generated_text += delta["content"]
|
56 |
+
except json.JSONDecodeError:
|
57 |
+
continue
|
58 |
+
try:
|
59 |
+
return float(generated_text.strip())
|
60 |
+
except ValueError:
|
61 |
+
st.warning(f"Could not convert the response to a float: {generated_text}")
|
62 |
+
return None
|
|
|
|
|
|
|
63 |
|
64 |
# Streamlit app layout
|
65 |
st.title("Climate Impact on Sports Performance and Infrastructure")
|
|
|
74 |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
75 |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
76 |
|
77 |
+
# Geographical location input
|
78 |
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
|
79 |
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
|
80 |
|
81 |
+
# Athlete-specific data
|
82 |
+
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
|
83 |
+
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
|
84 |
+
performance_history = st.text_area("Athlete Performance History:")
|
85 |
+
|
86 |
+
# Infrastructure characteristics
|
87 |
+
facility_type = st.selectbox("Facility Type:", ["Stadium", "Gymnasium", "Outdoor Field"])
|
88 |
+
facility_age = st.number_input("Facility Age (years):", min_value=0, max_value=100, value=10)
|
89 |
+
materials_used = st.text_input("Materials Used in Construction:")
|
90 |
+
|
91 |
if st.button("Generate Prediction"):
|
92 |
all_message = (
|
93 |
f"Assess the impact on sports performance and infrastructure based on climate conditions: "
|
94 |
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
|
95 |
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
|
96 |
+
f"Location: Latitude {latitude}, Longitude {longitude}. "
|
97 |
+
f"Athlete (Age: {age}, Sport: {sport}), Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used})."
|
98 |
)
|
99 |
|
100 |
try:
|
101 |
+
with st.spinner("Analyzing climate conditions..."):
|
102 |
+
response = call_ai_model(all_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
st.success("Initial analysis complete. Generating detailed predictions...")
|
|
|
|
|
|
|
105 |
|
106 |
+
generated_text = ""
|
107 |
+
for line in response.iter_lines():
|
108 |
+
if line:
|
109 |
+
line_content = line.decode('utf-8')
|
110 |
+
if line_content.startswith("data: "):
|
111 |
+
line_content = line_content[6:] # Strip "data: " prefix
|
112 |
+
try:
|
113 |
+
json_data = json.loads(line_content)
|
114 |
+
if "choices" in json_data:
|
115 |
+
delta = json_data["choices"][0]["delta"]
|
116 |
+
if "content" in delta:
|
117 |
+
generated_text += delta["content"]
|
118 |
+
except json.JSONDecodeError:
|
119 |
+
continue
|
120 |
|
121 |
+
st.success("Detailed predictions generated. Preparing visualizations...")
|
122 |
+
|
123 |
+
# Prepare data for visualization
|
124 |
+
results_data = {
|
125 |
+
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
|
126 |
+
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
|
127 |
+
}
|
128 |
+
results_df = pd.DataFrame(results_data)
|
129 |
+
|
130 |
+
# Display results in a table
|
131 |
+
st.subheader("Results Summary")
|
132 |
+
st.table(results_df)
|
133 |
+
|
134 |
+
# Display prediction
|
135 |
+
st.markdown("**Predicted Impact on Performance and Infrastructure:**")
|
136 |
+
st.markdown(generated_text.strip())
|
137 |
+
|
138 |
+
st.success("Visualizations ready. Generating performance data...")
|
139 |
+
|
140 |
+
# Generate performance data for different temperatures
|
141 |
+
temperatures = range(-10, 41, 5) # Temperatures from -10°C to 40°C in 5°C increments
|
142 |
+
performance_values = []
|
143 |
+
for temp in temperatures:
|
144 |
+
st.spinner(f"Fetching performance data for {temp}°C...")
|
145 |
+
performance_value = get_performance_data(temp)
|
146 |
+
if performance_value is not None:
|
147 |
+
performance_values.append(performance_value)
|
148 |
time.sleep(1)
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
if performance_values:
|
151 |
+
# Generate line graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
fig, ax = plt.subplots()
|
153 |
+
ax.plot(temperatures, performance_values, marker='o')
|
154 |
ax.set_xlabel('Temperature (°C)')
|
155 |
+
ax.set_ylabel('Performance Score')
|
156 |
+
ax.set_title('Temperature vs. Sports Performance')
|
|
|
157 |
st.pyplot(fig)
|
158 |
|
159 |
except ValueError as ve:
|