Spaces:
Running
Running
| import streamlit as st | |
| from openai import OpenAI | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| # Initialize the client | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1", | |
| api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token | |
| ) | |
| # Model link | |
| model_link = "mistralai/Mistral-7B-Instruct-v0.2" | |
| def reset_conversation(): | |
| ''' | |
| Resets Conversation | |
| ''' | |
| st.session_state.messages = [] | |
| return None | |
| # Set the temperature value directly in the code | |
| temperature = 0.5 | |
| # Add a button to clear conversation | |
| st.button('Reset Chat', on_click=reset_conversation) # Reset button | |
| # Initialize chat history | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| st.title("Mistral-7B Chatbot") | |
| # Function to get streamed response | |
| def get_streamed_response(message, history): | |
| all_message = [{ | |
| "role": "system", | |
| "content": "From now on, you are an AI assistant knowledgeable in general topics. You can respond with relevant information and provide concise, friendly replies. Always maintain a helpful and neutral tone. Ensure to be concise to keep the conversation flowing smoothly." | |
| }] | |
| for human, assistant in history: | |
| all_message.append({"role": "user", "content": human}) | |
| all_message.append({"role": "assistant", "content": assistant}) | |
| return all_message | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # Accept user input | |
| if prompt := st.chat_input("Type your message here..."): | |
| # Display user message in chat message container | |
| with st.chat_message("user"): | |
| st.markdown(prompt) | |
| # Add user message to chat history | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| # Prepare all messages for the conversation context | |
| history = [(msg["content"], next((m["content"] for m in st.session_state.messages if m["role"] == "assistant"), "")) for msg in st.session_state.messages] | |
| # Display assistant response in chat message container | |
| with st.chat_message("assistant"): | |
| try: | |
| response = client.chat.completions.create( | |
| model=model_link, | |
| messages=get_streamed_response(prompt, history), | |
| temperature=temperature, | |
| max_tokens=150 # Adjust the token limit as needed | |
| ) | |
| st.markdown(response['choices'][0]['message']['content']) | |
| except Exception as e: | |
| st.markdown("An error occurred. Please try again later.") | |
| st.markdown("Error details:") | |
| st.markdown(str(e)) | |
| # Add assistant's response to chat history | |
| st.session_state.messages.append({"role": "assistant", "content": response['choices'][0]['message']['content']}) | |