File size: 22,677 Bytes
57cd4b7
f2c9828
e88cde7
17ffa6a
e448014
3081403
e448014
3081403
1261ce0
3081403
 
c12824a
 
d10d482
 
 
c12824a
d209476
c96815e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425968
 
 
 
 
 
 
 
 
 
d10d482
 
 
c96815e
 
 
4425968
d209476
 
 
 
4425968
57256b4
4425968
 
 
 
 
 
 
e88cde7
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6e6d3
4425968
 
 
 
57256b4
4425968
 
441a3ff
4425968
 
 
 
 
 
 
 
 
 
 
a35310e
 
4425968
a35310e
 
 
441a3ff
4425968
 
441a3ff
4425968
 
 
 
 
 
a35310e
4425968
441a3ff
 
7b6e6d3
441a3ff
4425968
441a3ff
c96815e
441a3ff
 
 
 
 
 
 
 
 
a35310e
441a3ff
 
c96815e
 
1476b80
c96815e
 
 
 
 
b8f09a7
c96815e
0cb0031
 
 
 
 
 
 
 
 
 
 
 
c96815e
3081403
 
c96815e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4a7f4
 
 
 
 
 
 
 
 
 
5a54419
ab4a7f4
 
 
e395b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4a7f4
 
 
1e07946
 
5a54419
 
 
 
 
 
ab4a7f4
1e07946
 
ab4a7f4
e395b9b
1e07946
 
ab4a7f4
e395b9b
1e07946
e395b9b
1e07946
e395b9b
ab4a7f4
e395b9b
 
 
 
 
 
 
 
 
7b6e6d3
d10d482
 
e576d87
d10d482
7b6e6d3
 
 
 
 
 
 
 
 
 
 
 
 
d10d482
 
f57d2d5
 
 
d10d482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6e6d3
 
 
 
 
 
ab4a7f4
 
 
 
 
 
 
 
 
 
 
5a54419
ab4a7f4
 
 
 
 
 
 
c96815e
 
 
 
7b6e6d3
c96815e
 
 
 
 
 
7b6e6d3
4425968
5a54419
839677f
4425968
7b6e6d3
558ae57
4425968
 
e88cde7
7b6e6d3
4425968
7b6e6d3
 
4425968
 
e395b9b
4425968
e395b9b
55ecc95
4425968
 
 
 
a35310e
4425968
 
 
 
 
 
 
 
 
 
 
7b6e6d3
 
 
4425968
 
 
 
 
 
839677f
4425968
839677f
 
4425968
839677f
 
 
c96815e
4425968
3081403
839677f
33ed555
 
 
67040c8
 
 
a89dc66
 
 
 
 
 
67040c8
 
 
 
 
 
 
 
 
a89dc66
ab4a7f4
a89dc66
 
 
 
 
 
 
 
ab4a7f4
a89dc66
 
a35310e
a89dc66
 
 
 
 
 
7dc5f86
a89dc66
 
 
67040c8
ab4a7f4
67040c8
a89dc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a54419
 
 
 
 
67040c8
ab4a7f4
 
 
5a54419
ab4a7f4
 
 
 
 
 
 
 
 
 
 
 
 
5a54419
ab4a7f4
 
 
 
 
 
 
 
 
 
67040c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a54419
67040c8
55ecc95
5a54419
67040c8
55ecc95
 
9250e33
67040c8
 
 
5a54419
67040c8
55ecc95
9250e33
55ecc95
67040c8
9250e33
55ecc95
9250e33
67040c8
 
 
 
 
 
 
 
 
 
 
 
 
 
5a54419
ab4a7f4
 
 
 
67040c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8706a2e
67040c8
 
 
 
 
 
 
 
 
 
 
 
 
ab4a7f4
 
 
5a54419
ab4a7f4
 
 
67040c8
 
 
 
 
 
 
 
 
 
 
 
ab4a7f4
67040c8
 
 
 
 
 
 
 
 
 
 
 
441a3ff
 
e88cde7
 
 
 
 
 
67040c8
 
ab4a7f4
 
5a54419
ab4a7f4
 
 
 
 
441a3ff
 
67040c8
 
441a3ff
 
 
67040c8
 
 
ab4a7f4
5a54419
ab4a7f4
 
 
 
e88cde7
5a54419
e88cde7
 
441a3ff
f2c9828
ab4a7f4
5a54419
ab4a7f4
 
 
 
 
5a54419
ab4a7f4
5a54419
a89dc66
 
67040c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12824a
629e9b9
c12824a
 
79c4836
c12824a
 
f2c9828
67040c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile

from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
from apscheduler.schedulers.background import BackgroundScheduler

# Space parameters
SPACE_ID = os.environ.get("SPACE_ID") if os.environ.get("SPACE_ID") else ""
SPACE_URL = "https://" + SPACE_ID.replace("/", "-") + ".hf.space/" if SPACE_ID else "http://localhost:7860/"
HF_TOKEN = os.environ.get("HF_TOKEN")

# Folder
DOWNLOAD_FOLDER = "./downloads"
OUTPUT_FOLDER = "./outputs"

def create_folder(folder_name: str):
    if not os.path.exists(folder_name):
        print(f"Creating folder: {folder_name}")
        os.makedirs(folder_name)

def is_valid_token(oauth_token):
    if oauth_token is None or oauth_token.token is None:
        return False

    try:
        whoami(oauth_token.token)
    except Exception as e:
        return False

    return True

# escape HTML for logging
def escape(s: str) -> str:
    s = s.replace("&", "&") # Must be done first!
    s = s.replace("<", "&lt;")
    s = s.replace(">", "&gt;")
    s = s.replace('"', "&quot;")
    s = s.replace("\n", "<br/>")
    return s

def get_model_creator(model_id: str):
    return model_id.split('/')[0]

def get_model_name(model_id: str):
    return model_id.split('/')[-1]

def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
    if not os.path.isfile(model_path):
        raise Exception(f"Model file not found: {model_path}")

    print("Running imatrix command...")
    imatrix_command = [
        "llama-imatrix",
        "-m", model_path,
        "-f", train_data_path,
        "-ngl", "99",
        "--output-frequency", "10",
        "-o", output_path,
    ]
    process = subprocess.Popen(imatrix_command, shell=False)

    try:
        process.wait(timeout=60)  # added wait
    except subprocess.TimeoutExpired:
        print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
        process.send_signal(signal.SIGINT)
        try:
            process.wait(timeout=5)  # grace period
        except subprocess.TimeoutExpired:
            print("Imatrix proc still didn't term. Forecfully terming process...")
            process.kill()

    print("Importance matrix generation completed.")

def split_upload_model(model_path: str, outdir: str, repo_id: str, token: str, split_max_tensors=256, split_max_size=None):
    print(f"Model path: {model_path}")
    print(f"Output dir: {outdir}")

    split_cmd = [
        "llama-gguf-split",
        "--split",
    ]
    if split_max_size:
        split_cmd.append("--split-max-size")
        split_cmd.append(split_max_size)
    else:
        split_cmd.append("--split-max-tensors")
        split_cmd.append(str(split_max_tensors))

    # args for output
    model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
    split_cmd.append(model_path)
    split_cmd.append(model_path_prefix)

    print(f"Split command: {split_cmd}")

    result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
    print(f"Split command stdout: {result.stdout}")
    print(f"Split command stderr: {result.stderr}")

    if result.returncode != 0:
        stderr_str = result.stderr.decode("utf-8")
        raise Exception(f"Error splitting the model: {stderr_str}")
    print("Model split successfully!")

    # remove the original model file if needed
    if os.path.exists(model_path):
        os.remove(model_path)

    model_file_prefix = model_path_prefix.split('/')[-1]
    print(f"Model file name prefix: {model_file_prefix}")
    sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
    if sharded_model_files:
        print(f"Sharded model files: {sharded_model_files}")
        api = HfApi(token=token)
        for file in sharded_model_files:
            file_path = os.path.join(outdir, file)
            try:
                print(f"Uploading file: {file_path}")
                api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=file,
                    repo_id=repo_id,
                )
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")

    print("Sharded model has been uploaded successfully!")

def download_base_model(token: str, model_id: str, outdir: tempfile.TemporaryDirectory):
    model_name = get_model_name(model_id)

    with tempfile.TemporaryDirectory(dir=DOWNLOAD_FOLDER) as tmpdir:
        # Download model
        print(f"Downloading model {model_name}")
        local_dir = Path(tmpdir)/model_name # Keep the model name as the dirname so the model name metadata is populated correctly
        print(f"Local directory: {os.path.abspath(local_dir)}")

        api = HfApi(token=token)
        pattern = (
            "*.safetensors"
            if any(
                file.path.endswith(".safetensors")
                for file in api.list_repo_tree(
                    repo_id=model_id,
                    recursive=True,
                )
            )
            else "*.bin"
        )

        dl_pattern = ["*.md", "*.json", "*.model"]
        dl_pattern += [pattern]

        api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
        print("Model downloaded successfully!")

        print(f"Model directory contents: {os.listdir(local_dir)}")
        config_dir = local_dir/"config.json"
        adapter_config_dir = local_dir/"adapter_config.json"
        if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
            raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')

        # Convert HF to GGUF
        fp16_model = str(Path(outdir)/f"{model_name}_fp16.gguf")
        print(f"Converting to GGUF FP16: {os.path.abspath(fp16_model)}")
        result = subprocess.run(
            [
                "python3", "/app/convert_hf_to_gguf.py", local_dir, "--outtype", "f16", "--outfile", fp16_model
            ],
            shell=False,
            capture_output=True
        )
        print(f"Model directory contents: {result}")
        if result.returncode != 0:
            stderr_str = result.stderr.decode("utf-8")
            raise Exception(f"Error converting to fp16: {stderr_str}")

        print("Model converted to fp16 successfully!")
        print(f"Converted model path: {os.path.abspath(fp16_model)}")

        return fp16_model

def quantize_model(
    outdir: tempfile.TemporaryDirectory,
    gguf_name: str,
    fp16: str,
    q_method: str,
    use_imatrix: bool,
    imatrix_q_method: str,
    imatrix_path: str,
    quant_embedding: bool,
    embedding_tensor_method: str,
    leave_output: bool,
    quant_output: bool,
    output_tensor_method: str,
):
    if use_imatrix:
        if train_data_file:
            train_data_path = train_data_file.name
        else:
            train_data_path = "train_data.txt" #fallback calibration dataset

        print(f"Training data file path: {train_data_path}")

        if not os.path.isfile(train_data_path):
            raise Exception(f"Training data file not found: {train_data_path}")

        generate_importance_matrix(fp16, train_data_path, imatrix_path)
    else:
        print("Not using imatrix quantization.")

    # Quantize the model
    quantize_cmd = ["llama-quantize"]

    if quant_embedding:
        quantize_cmd.append("--token-embedding-type")
        quantize_cmd.append(embedding_tensor_method)
    if leave_output:
        quantize_cmd.append("--leave-output-tensor")
    else:
        if quant_output:
            quantize_cmd.append("--output-tensor-type")
            quantize_cmd.append(output_tensor_method)
    if use_imatrix:
        quantize_cmd.append("--imatrix")
        quantize_cmd.append(imatrix_path)

    quantized_gguf = str(Path(outdir)/gguf_name)
    quantize_cmd.append(fp16)
    quantize_cmd.append(quantized_gguf)

    if use_imatrix:
        quantize_cmd.append(imatrix_q_method)
    else:
        quantize_cmd.append(q_method)

    print(f"Quantizing model with {quantize_cmd}")
    result = subprocess.run(quantize_cmd, shell=False, capture_output=True)
    if result.returncode != 0:
        stderr_str = result.stderr.decode("utf-8")
        raise Exception(f"Error quantizing: {stderr_str}")

    print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
    print(f"Quantized model path: {os.path.abspath(quantized_gguf)}")
    return quantized_gguf

def generate_readme(outdir: tempfile.TemporaryDirectory, token: str, model_id: str, new_repo_id: str, gguf_name: str):
    creator = get_model_creator(model_id)
    model_name = get_model_name(model_id)
    username = whoami(token)["name"]

    try:
        card = ModelCard.load(model_id, token=token)
    except:
        card = ModelCard("")

    if card.data.tags is None:
        card.data.tags = []

    card.data.tags.append("llama-cpp")
    card.data.tags.append("gguf-my-repo")
    card.data.base_model = model_id
    card.text = dedent(
        f"""
# {model_name}

**Model creator:** [{creator}](https://huggingface.co/{creator})<br/>
**Original model**: [{model_id}](https://huggingface.co/{model_id})<br/>
**GGUF quantization:** provided by [{username}](https:/huggingface.co/{username}) using `llama.cpp`<br/>

## Special thanks

🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.

## Use with Ollama

```bash
ollama run hf.co/{new_repo_id}:<quantization>
```

## Use with LM Studio

```bash
lms load {new_repo_id}
```

## Use with llama.cpp CLI

```bash
llama-cli --hf-repo {new_repo_id} --hf-file {gguf_name} -p "The meaning to life and the universe is"
```

## Use with llama.cpp Server:

```bash
llama-server --hf-repo {new_repo_id} --hf-file {gguf_name} -c 4096
```
        """
    )
    readme_path = Path(outdir)/"README.md"
    card.save(readme_path)
    return readme_path

def process_model(
    model_id: str,
    q_method: str,
    use_imatrix: bool,
    imatrix_q_method: str,
    private_repo: bool,
    train_data_file,
    repo_name: str,
    gguf_name: str,
    quant_embedding: bool,
    embedding_tensor_method: str,
    leave_output: bool,
    quant_output: bool,
    output_tensor_method: str,
    split_model: bool,
    split_max_tensors,
    split_max_size: str | None,
    oauth_token: gr.OAuthToken | None,
):
    # validate the oauth token
    if is_valid_token(oauth_token) is False:
        raise gr.Error("You must be logged in to use GGUF-my-repo")

    token = oauth_token.token
    print(f"Current working directory: {os.path.abspath(os.getcwd())}")
    create_folder(DOWNLOAD_FOLDER)
    create_folder(OUTPUT_FOLDER)

    try:
        with tempfile.TemporaryDirectory(dir=OUTPUT_FOLDER) as outdir:
            fp16 = download_base_model(token, model_id, outdir)
            imatrix_path = Path(outdir)/"imatrix.dat"
            quantized_gguf = quantize_model(outdir, gguf_name, fp16, q_method, use_imatrix, imatrix_q_method, imatrix_path, quant_embedding, embedding_tensor_method, leave_output, quant_output, output_tensor_method)

            # Create empty repo
            api = HfApi(token=token)
            new_repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, private=private_repo)
            new_repo_id = new_repo_url.repo_id
            print("Repo created successfully!", new_repo_url)

            # Upload model
            if split_model:
                print(f"Splitting quantized model: {quantized_gguf}")
                split_upload_model(str(quantized_gguf), outdir, new_repo_id, token, split_max_tensors, split_max_size)
            else:
                try:
                    print(f"Uploading quantized model: {quantized_gguf}")
                    api.upload_file(
                        path_or_fileobj=quantized_gguf,
                        path_in_repo=gguf_name,
                        repo_id=new_repo_id,
                    )
                except Exception as e:
                    raise Exception(f"Error uploading quantized model: {e}")

            if os.path.isfile(imatrix_path):
                try:
                    print(f"Uploading imatrix.dat: {imatrix_path}")
                    api.upload_file(
                        path_or_fileobj=imatrix_path,
                        path_in_repo="imatrix.dat",
                        repo_id=new_repo_id,
                    )
                except Exception as e:
                    raise Exception(f"Error uploading imatrix.dat: {e}")

            # Upload README.md
            readme_path = generate_readme(outdir, token, model_id, new_repo_id, gguf_name)

            api.upload_file(
                path_or_fileobj=readme_path,
                path_in_repo="README.md",
                repo_id=new_repo_id,
            )
            print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")

        # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here

        return (
            f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
            "llama.png",
        )
    except Exception as e:
        print((f"Error processing model: {e}"))
        return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")


css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
#####
# Base model section
#####
model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on Huggingface",
    search_type="model",
)

#####
# Quantization section
#####
use_imatrix = gr.Checkbox(
    value=False,
    label="Use Imatrix Quantization",
    info="Use importance matrix for quantization."
)

q_method = gr.Dropdown(
    choices=["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "BF16"],
    label="Quantization Method",
    info="GGML quantization type",
    value="Q4_K_M",
    filterable=False,
    visible=True
)

imatrix_q_method = gr.Dropdown(
    choices=["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
    label="Imatrix Quantization Method",
    info="GGML imatrix quants type",
    value="IQ4_NL",
    filterable=False,
    visible=False
)

train_data_file = gr.File(
    label="Training Data File",
    file_types=[".txt"],
    visible=False
)

#####
# Advanced Options section
#####
split_model = gr.Checkbox(
    value=False,
    label="Split Model",
    info="Shard the model using gguf-split."
)

split_max_tensors = gr.Number(
    value=256,
    label="Max Tensors per File",
    info="Maximum number of tensors per file when splitting model.",
    visible=False
)

split_max_size = gr.Textbox(
    label="Max File Size",
    info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
    visible=False
)

leave_output = gr.Checkbox(
    value=False,
    label="Leave output tensor",
    info="Leaves output.weight un(re)quantized"
)

quant_embedding = gr.Checkbox(
    value=False,
    label="Quant embeddings tensor",
    info="Quantize embeddings tensor separately"
)
embedding_tensor_method = gr.Dropdown(
    choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
    label="Output Quantization Method",
    info="use a specific quant type for the token embeddings tensor",
    value="Q8_0",
    filterable=False,
    visible=False
)

quant_output = gr.Checkbox(
    value=False,
    label="Quant output tensor",
    info="Quantize output tensor separately"
)
output_tensor_method = gr.Dropdown(
    choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
    label="Output Quantization Method",
    info="use a specific quant type for the output.weight tensor",
    value="Q8_0",
    filterable=False,
    visible=False
)

#####
# Output Settings section
#####
private_repo = gr.Checkbox(
    value=False,
    label="Private Repo",
    info="Create a private repo under your username."
)

repo_name = gr.Textbox(
    label="Output Repository Name",
    info="Set your repository name",
    max_lines=1
)

gguf_name = gr.Textbox(
    label="Output File Name",
    info="Set output file name",
    max_lines=1
)

def update_output_repo(model_id, oauth_token: gr.OAuthToken | None):
    if oauth_token is None or not oauth_token.token:
        return ""

    if not model_id:
        return ""

    username = whoami(oauth_token.token)["name"]
    model_name = get_model_name(model_id)
    return f"{username}/{model_name}-GGUF"

def update_output_filename(model_id, use_imatrix, q_method, imatrix_q_method):
    if not model_id:
        return ""

    model_name = get_model_name(model_id)

    if use_imatrix:
        return f"{model_name}-{imatrix_q_method.upper()}-imat.gguf"

    return f"{model_name}-{q_method.upper()}.gguf"

#####
# Buttons section
#####
clear_btn = gr.ClearButton(
    value="Clear",
    variant="secondary",
    components=[
        model_id,
        q_method,
        use_imatrix,
        imatrix_q_method,
        private_repo,
        train_data_file,
        leave_output,
        quant_embedding,
        embedding_tensor_method,
        quant_output,
        output_tensor_method,
        split_model,
        split_max_tensors,
        split_max_size,
        repo_name,
        gguf_name,
    ]
)
submit_btn = gr.Button(
    value="Submit",
    variant="primary"
)

#####
# Outputs section
#####
output_label = gr.Markdown(label="output")

output_image = gr.Image(
    show_label=False,
    show_download_button=False,
    interactive=False
)

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    #####
    # Layout
    #####
    gr.Markdown("You must be logged in to use GGUF-my-repo.")
    gr.LoginButton(min_width=250)

    gr.HTML("<h1 style=\"text-aling:center;\">Create your own GGUF Quants!</h1>")
    gr.Markdown(f"The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.<br/>Use via {SPACE_URL}")

    with gr.Row():
        with gr.Column() as inputs:
            gr.Markdown("### Model Configuration")
            model_id.render()

            with gr.Column():
                use_imatrix.render()
                q_method.render()
                imatrix_q_method.render()
                train_data_file.render()

            gr.Markdown("### Advanced Options")

            quant_embedding.render()
            embedding_tensor_method.render()
            leave_output.render()
            quant_output.render()
            output_tensor_method.render()

            split_model.render()
            with gr.Row() as split_options:  # Group split options
                split_max_tensors.render()
                split_max_size.render()

            gr.Markdown("### Output Settings")
            gr.Markdown("You can customize settings for your GGUF repo.")
            private_repo.render()
            with gr.Row():
                repo_name.render()
                gguf_name.render()

            # Buttons
            with gr.Row() as buttons:
                clear_btn.render()
                submit_btn.render()

        with gr.Column() as outputs:
            output_label.render()
            output_image.render()

    #####
    # Button Click handlers
    #####
    submit_btn.click(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
            use_imatrix,
            imatrix_q_method,
            private_repo,
            train_data_file,
            repo_name,
            gguf_name,
            quant_embedding,
            embedding_tensor_method,
            leave_output,
            quant_output,
            output_tensor_method,
            split_model,
            split_max_tensors,
            split_max_size
        ],
        outputs=[
            output_label,
            output_image,
        ],
    )

    #####
    # OnChange handlers
    #####
    use_imatrix.change(
        fn=lambda use_imatrix: [gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)],
        inputs=use_imatrix,
        outputs=[q_method, imatrix_q_method, train_data_file]
    )

    split_model.change(
        fn=lambda split_model: [gr.update(visible=split_model), gr.update(visible=split_model)],
        inputs=split_model,
        outputs=[split_max_tensors, split_max_size]
    )

    quant_embedding.change(
        fn=lambda quant_embedding: gr.update(visible=quant_embedding),
        inputs=quant_embedding,
        outputs=[embedding_tensor_method]
    )

    quant_output.change(
        fn=lambda quant_output: [gr.update(visible=quant_output), gr.update(visible=not quant_output)],
        inputs=quant_output,
        outputs=[output_tensor_method, leave_output]
    )

    model_id.change(
        fn=update_output_repo,
        inputs=model_id,
        outputs=[repo_name]
    )

    model_id.change(
        fn=update_output_filename,
        inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
        outputs=[gguf_name]
    )
    use_imatrix.change(
        fn=update_output_filename,
        inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
        outputs=[gguf_name]
    )
    q_method.change(
        fn=update_output_filename,
        inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
        outputs=[gguf_name]
    )
    imatrix_q_method.change(
        fn=update_output_filename,
        inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
        outputs=[gguf_name]
    )

def restart_space():
    HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)