Spaces:
Running
Running
File size: 22,677 Bytes
57cd4b7 f2c9828 e88cde7 17ffa6a e448014 3081403 e448014 3081403 1261ce0 3081403 c12824a d10d482 c12824a d209476 c96815e 4425968 d10d482 c96815e 4425968 d209476 4425968 57256b4 4425968 e88cde7 7b6e6d3 4425968 57256b4 4425968 441a3ff 4425968 a35310e 4425968 a35310e 441a3ff 4425968 441a3ff 4425968 a35310e 4425968 441a3ff 7b6e6d3 441a3ff 4425968 441a3ff c96815e 441a3ff a35310e 441a3ff c96815e 1476b80 c96815e b8f09a7 c96815e 0cb0031 c96815e 3081403 c96815e ab4a7f4 5a54419 ab4a7f4 e395b9b ab4a7f4 1e07946 5a54419 ab4a7f4 1e07946 ab4a7f4 e395b9b 1e07946 ab4a7f4 e395b9b 1e07946 e395b9b 1e07946 e395b9b ab4a7f4 e395b9b 7b6e6d3 d10d482 e576d87 d10d482 7b6e6d3 d10d482 f57d2d5 d10d482 7b6e6d3 ab4a7f4 5a54419 ab4a7f4 c96815e 7b6e6d3 c96815e 7b6e6d3 4425968 5a54419 839677f 4425968 7b6e6d3 558ae57 4425968 e88cde7 7b6e6d3 4425968 7b6e6d3 4425968 e395b9b 4425968 e395b9b 55ecc95 4425968 a35310e 4425968 7b6e6d3 4425968 839677f 4425968 839677f 4425968 839677f c96815e 4425968 3081403 839677f 33ed555 67040c8 a89dc66 67040c8 a89dc66 ab4a7f4 a89dc66 ab4a7f4 a89dc66 a35310e a89dc66 7dc5f86 a89dc66 67040c8 ab4a7f4 67040c8 a89dc66 5a54419 67040c8 ab4a7f4 5a54419 ab4a7f4 5a54419 ab4a7f4 67040c8 5a54419 67040c8 55ecc95 5a54419 67040c8 55ecc95 9250e33 67040c8 5a54419 67040c8 55ecc95 9250e33 55ecc95 67040c8 9250e33 55ecc95 9250e33 67040c8 5a54419 ab4a7f4 67040c8 8706a2e 67040c8 ab4a7f4 5a54419 ab4a7f4 67040c8 ab4a7f4 67040c8 441a3ff e88cde7 67040c8 ab4a7f4 5a54419 ab4a7f4 441a3ff 67040c8 441a3ff 67040c8 ab4a7f4 5a54419 ab4a7f4 e88cde7 5a54419 e88cde7 441a3ff f2c9828 ab4a7f4 5a54419 ab4a7f4 5a54419 ab4a7f4 5a54419 a89dc66 67040c8 c12824a 629e9b9 c12824a 79c4836 c12824a f2c9828 67040c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
from apscheduler.schedulers.background import BackgroundScheduler
# Space parameters
SPACE_ID = os.environ.get("SPACE_ID") if os.environ.get("SPACE_ID") else ""
SPACE_URL = "https://" + SPACE_ID.replace("/", "-") + ".hf.space/" if SPACE_ID else "http://localhost:7860/"
HF_TOKEN = os.environ.get("HF_TOKEN")
# Folder
DOWNLOAD_FOLDER = "./downloads"
OUTPUT_FOLDER = "./outputs"
def create_folder(folder_name: str):
if not os.path.exists(folder_name):
print(f"Creating folder: {folder_name}")
os.makedirs(folder_name)
def is_valid_token(oauth_token):
if oauth_token is None or oauth_token.token is None:
return False
try:
whoami(oauth_token.token)
except Exception as e:
return False
return True
# escape HTML for logging
def escape(s: str) -> str:
s = s.replace("&", "&") # Must be done first!
s = s.replace("<", "<")
s = s.replace(">", ">")
s = s.replace('"', """)
s = s.replace("\n", "<br/>")
return s
def get_model_creator(model_id: str):
return model_id.split('/')[0]
def get_model_name(model_id: str):
return model_id.split('/')[-1]
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
if not os.path.isfile(model_path):
raise Exception(f"Model file not found: {model_path}")
print("Running imatrix command...")
imatrix_command = [
"llama-imatrix",
"-m", model_path,
"-f", train_data_path,
"-ngl", "99",
"--output-frequency", "10",
"-o", output_path,
]
process = subprocess.Popen(imatrix_command, shell=False)
try:
process.wait(timeout=60) # added wait
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=5) # grace period
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forecfully terming process...")
process.kill()
print("Importance matrix generation completed.")
def split_upload_model(model_path: str, outdir: str, repo_id: str, token: str, split_max_tensors=256, split_max_size=None):
print(f"Model path: {model_path}")
print(f"Output dir: {outdir}")
split_cmd = [
"llama-gguf-split",
"--split",
]
if split_max_size:
split_cmd.append("--split-max-size")
split_cmd.append(split_max_size)
else:
split_cmd.append("--split-max-tensors")
split_cmd.append(str(split_max_tensors))
# args for output
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
split_cmd.append(model_path)
split_cmd.append(model_path_prefix)
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error splitting the model: {stderr_str}")
print("Model split successfully!")
# remove the original model file if needed
if os.path.exists(model_path):
os.remove(model_path)
model_file_prefix = model_path_prefix.split('/')[-1]
print(f"Model file name prefix: {model_file_prefix}")
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
api = HfApi(token=token)
for file in sharded_model_files:
file_path = os.path.join(outdir, file)
try:
print(f"Uploading file: {file_path}")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def download_base_model(token: str, model_id: str, outdir: tempfile.TemporaryDirectory):
model_name = get_model_name(model_id)
with tempfile.TemporaryDirectory(dir=DOWNLOAD_FOLDER) as tmpdir:
# Download model
print(f"Downloading model {model_name}")
local_dir = Path(tmpdir)/model_name # Keep the model name as the dirname so the model name metadata is populated correctly
print(f"Local directory: {os.path.abspath(local_dir)}")
api = HfApi(token=token)
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern = ["*.md", "*.json", "*.model"]
dl_pattern += [pattern]
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Model directory contents: {os.listdir(local_dir)}")
config_dir = local_dir/"config.json"
adapter_config_dir = local_dir/"adapter_config.json"
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
# Convert HF to GGUF
fp16_model = str(Path(outdir)/f"{model_name}_fp16.gguf")
print(f"Converting to GGUF FP16: {os.path.abspath(fp16_model)}")
result = subprocess.run(
[
"python3", "/app/convert_hf_to_gguf.py", local_dir, "--outtype", "f16", "--outfile", fp16_model
],
shell=False,
capture_output=True
)
print(f"Model directory contents: {result}")
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error converting to fp16: {stderr_str}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {os.path.abspath(fp16_model)}")
return fp16_model
def quantize_model(
outdir: tempfile.TemporaryDirectory,
gguf_name: str,
fp16: str,
q_method: str,
use_imatrix: bool,
imatrix_q_method: str,
imatrix_path: str,
quant_embedding: bool,
embedding_tensor_method: str,
leave_output: bool,
quant_output: bool,
output_tensor_method: str,
):
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "train_data.txt" #fallback calibration dataset
print(f"Training data file path: {train_data_path}")
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path, imatrix_path)
else:
print("Not using imatrix quantization.")
# Quantize the model
quantize_cmd = ["llama-quantize"]
if quant_embedding:
quantize_cmd.append("--token-embedding-type")
quantize_cmd.append(embedding_tensor_method)
if leave_output:
quantize_cmd.append("--leave-output-tensor")
else:
if quant_output:
quantize_cmd.append("--output-tensor-type")
quantize_cmd.append(output_tensor_method)
if use_imatrix:
quantize_cmd.append("--imatrix")
quantize_cmd.append(imatrix_path)
quantized_gguf = str(Path(outdir)/gguf_name)
quantize_cmd.append(fp16)
quantize_cmd.append(quantized_gguf)
if use_imatrix:
quantize_cmd.append(imatrix_q_method)
else:
quantize_cmd.append(q_method)
print(f"Quantizing model with {quantize_cmd}")
result = subprocess.run(quantize_cmd, shell=False, capture_output=True)
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error quantizing: {stderr_str}")
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
print(f"Quantized model path: {os.path.abspath(quantized_gguf)}")
return quantized_gguf
def generate_readme(outdir: tempfile.TemporaryDirectory, token: str, model_id: str, new_repo_id: str, gguf_name: str):
creator = get_model_creator(model_id)
model_name = get_model_name(model_id)
username = whoami(token)["name"]
try:
card = ModelCard.load(model_id, token=token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("gguf-my-repo")
card.data.base_model = model_id
card.text = dedent(
f"""
# {model_name}
**Model creator:** [{creator}](https://huggingface.co/{creator})<br/>
**Original model**: [{model_id}](https://huggingface.co/{model_id})<br/>
**GGUF quantization:** provided by [{username}](https:/huggingface.co/{username}) using `llama.cpp`<br/>
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
## Use with Ollama
```bash
ollama run hf.co/{new_repo_id}:<quantization>
```
## Use with LM Studio
```bash
lms load {new_repo_id}
```
## Use with llama.cpp CLI
```bash
llama-cli --hf-repo {new_repo_id} --hf-file {gguf_name} -p "The meaning to life and the universe is"
```
## Use with llama.cpp Server:
```bash
llama-server --hf-repo {new_repo_id} --hf-file {gguf_name} -c 4096
```
"""
)
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
return readme_path
def process_model(
model_id: str,
q_method: str,
use_imatrix: bool,
imatrix_q_method: str,
private_repo: bool,
train_data_file,
repo_name: str,
gguf_name: str,
quant_embedding: bool,
embedding_tensor_method: str,
leave_output: bool,
quant_output: bool,
output_tensor_method: str,
split_model: bool,
split_max_tensors,
split_max_size: str | None,
oauth_token: gr.OAuthToken | None,
):
# validate the oauth token
if is_valid_token(oauth_token) is False:
raise gr.Error("You must be logged in to use GGUF-my-repo")
token = oauth_token.token
print(f"Current working directory: {os.path.abspath(os.getcwd())}")
create_folder(DOWNLOAD_FOLDER)
create_folder(OUTPUT_FOLDER)
try:
with tempfile.TemporaryDirectory(dir=OUTPUT_FOLDER) as outdir:
fp16 = download_base_model(token, model_id, outdir)
imatrix_path = Path(outdir)/"imatrix.dat"
quantized_gguf = quantize_model(outdir, gguf_name, fp16, q_method, use_imatrix, imatrix_q_method, imatrix_path, quant_embedding, embedding_tensor_method, leave_output, quant_output, output_tensor_method)
# Create empty repo
api = HfApi(token=token)
new_repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
# Upload model
if split_model:
print(f"Splitting quantized model: {quantized_gguf}")
split_upload_model(str(quantized_gguf), outdir, new_repo_id, token, split_max_tensors, split_max_size)
else:
try:
print(f"Uploading quantized model: {quantized_gguf}")
api.upload_file(
path_or_fileobj=quantized_gguf,
path_in_repo=gguf_name,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
if os.path.isfile(imatrix_path):
try:
print(f"Uploading imatrix.dat: {imatrix_path}")
api.upload_file(
path_or_fileobj=imatrix_path,
path_in_repo="imatrix.dat",
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
# Upload README.md
readme_path = generate_readme(outdir, token, model_id, new_repo_id, gguf_name)
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
return (
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
"llama.png",
)
except Exception as e:
print((f"Error processing model: {e}"))
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
#####
# Base model section
#####
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
#####
# Quantization section
#####
use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
q_method = gr.Dropdown(
choices=["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "BF16"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True
)
imatrix_q_method = gr.Dropdown(
choices=["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
train_data_file = gr.File(
label="Training Data File",
file_types=[".txt"],
visible=False
)
#####
# Advanced Options section
#####
split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
visible=False
)
leave_output = gr.Checkbox(
value=False,
label="Leave output tensor",
info="Leaves output.weight un(re)quantized"
)
quant_embedding = gr.Checkbox(
value=False,
label="Quant embeddings tensor",
info="Quantize embeddings tensor separately"
)
embedding_tensor_method = gr.Dropdown(
choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
label="Output Quantization Method",
info="use a specific quant type for the token embeddings tensor",
value="Q8_0",
filterable=False,
visible=False
)
quant_output = gr.Checkbox(
value=False,
label="Quant output tensor",
info="Quantize output tensor separately"
)
output_tensor_method = gr.Dropdown(
choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
label="Output Quantization Method",
info="use a specific quant type for the output.weight tensor",
value="Q8_0",
filterable=False,
visible=False
)
#####
# Output Settings section
#####
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
repo_name = gr.Textbox(
label="Output Repository Name",
info="Set your repository name",
max_lines=1
)
gguf_name = gr.Textbox(
label="Output File Name",
info="Set output file name",
max_lines=1
)
def update_output_repo(model_id, oauth_token: gr.OAuthToken | None):
if oauth_token is None or not oauth_token.token:
return ""
if not model_id:
return ""
username = whoami(oauth_token.token)["name"]
model_name = get_model_name(model_id)
return f"{username}/{model_name}-GGUF"
def update_output_filename(model_id, use_imatrix, q_method, imatrix_q_method):
if not model_id:
return ""
model_name = get_model_name(model_id)
if use_imatrix:
return f"{model_name}-{imatrix_q_method.upper()}-imat.gguf"
return f"{model_name}-{q_method.upper()}.gguf"
#####
# Buttons section
#####
clear_btn = gr.ClearButton(
value="Clear",
variant="secondary",
components=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
leave_output,
quant_embedding,
embedding_tensor_method,
quant_output,
output_tensor_method,
split_model,
split_max_tensors,
split_max_size,
repo_name,
gguf_name,
]
)
submit_btn = gr.Button(
value="Submit",
variant="primary"
)
#####
# Outputs section
#####
output_label = gr.Markdown(label="output")
output_image = gr.Image(
show_label=False,
show_download_button=False,
interactive=False
)
# Create Gradio interface
with gr.Blocks(css=css) as demo:
#####
# Layout
#####
gr.Markdown("You must be logged in to use GGUF-my-repo.")
gr.LoginButton(min_width=250)
gr.HTML("<h1 style=\"text-aling:center;\">Create your own GGUF Quants!</h1>")
gr.Markdown(f"The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.<br/>Use via {SPACE_URL}")
with gr.Row():
with gr.Column() as inputs:
gr.Markdown("### Model Configuration")
model_id.render()
with gr.Column():
use_imatrix.render()
q_method.render()
imatrix_q_method.render()
train_data_file.render()
gr.Markdown("### Advanced Options")
quant_embedding.render()
embedding_tensor_method.render()
leave_output.render()
quant_output.render()
output_tensor_method.render()
split_model.render()
with gr.Row() as split_options: # Group split options
split_max_tensors.render()
split_max_size.render()
gr.Markdown("### Output Settings")
gr.Markdown("You can customize settings for your GGUF repo.")
private_repo.render()
with gr.Row():
repo_name.render()
gguf_name.render()
# Buttons
with gr.Row() as buttons:
clear_btn.render()
submit_btn.render()
with gr.Column() as outputs:
output_label.render()
output_image.render()
#####
# Button Click handlers
#####
submit_btn.click(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
repo_name,
gguf_name,
quant_embedding,
embedding_tensor_method,
leave_output,
quant_output,
output_tensor_method,
split_model,
split_max_tensors,
split_max_size
],
outputs=[
output_label,
output_image,
],
)
#####
# OnChange handlers
#####
use_imatrix.change(
fn=lambda use_imatrix: [gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)],
inputs=use_imatrix,
outputs=[q_method, imatrix_q_method, train_data_file]
)
split_model.change(
fn=lambda split_model: [gr.update(visible=split_model), gr.update(visible=split_model)],
inputs=split_model,
outputs=[split_max_tensors, split_max_size]
)
quant_embedding.change(
fn=lambda quant_embedding: gr.update(visible=quant_embedding),
inputs=quant_embedding,
outputs=[embedding_tensor_method]
)
quant_output.change(
fn=lambda quant_output: [gr.update(visible=quant_output), gr.update(visible=not quant_output)],
inputs=quant_output,
outputs=[output_tensor_method, leave_output]
)
model_id.change(
fn=update_output_repo,
inputs=model_id,
outputs=[repo_name]
)
model_id.change(
fn=update_output_filename,
inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
outputs=[gguf_name]
)
use_imatrix.change(
fn=update_output_filename,
inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
outputs=[gguf_name]
)
q_method.change(
fn=update_output_filename,
inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
outputs=[gguf_name]
)
imatrix_q_method.change(
fn=update_output_filename,
inputs=[model_id, use_imatrix, q_method, imatrix_q_method],
outputs=[gguf_name]
)
def restart_space():
HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|