Spaces:
Running
Running
File size: 35,395 Bytes
57cd4b7 f2c9828 e88cde7 3081403 ad94fc8 2d3ee83 ad94fc8 e448014 ad94fc8 3081403 1261ce0 c12824a ad94fc8 dec2486 ad94fc8 2d3ee83 ad94fc8 239afdd ad94fc8 239afdd 2d3ee83 fa221c9 ad94fc8 239afdd ad94fc8 dceec55 ad94fc8 eb0c0ed ad94fc8 6475b9d ad94fc8 6475b9d ad94fc8 6475b9d ad94fc8 e7b8f47 ad94fc8 e7b8f47 dec2486 e7b8f47 ad94fc8 239afdd ad94fc8 239afdd ad94fc8 e7b8f47 ad94fc8 e7b8f47 ad94fc8 2ae55e9 e88cde7 eb0c0ed e88cde7 ad94fc8 eb0c0ed ad94fc8 239afdd ad94fc8 2ae55e9 ad94fc8 239afdd 2ae55e9 239afdd e7b8f47 ad94fc8 1147115 ad94fc8 1147115 ad94fc8 1147115 ad94fc8 2ae55e9 239afdd eb0c0ed 239afdd 2ae55e9 eb0c0ed 2ae55e9 239afdd ad94fc8 239afdd 2ae55e9 ad94fc8 1147115 ad94fc8 1147115 ad94fc8 441a3ff 239afdd 441a3ff 1147115 441a3ff c96815e 1147115 441a3ff ad94fc8 a35310e ad94fc8 441a3ff 2d3ee83 ad94fc8 2d3ee83 c0d1d96 2d3ee83 ad94fc8 2d3ee83 1476b80 ad94fc8 2d3ee83 ad94fc8 b8f09a7 ad94fc8 2d3ee83 ad94fc8 2d3ee83 ad94fc8 0cb0031 ad94fc8 0cb0031 ad94fc8 2d3ee83 ad94fc8 2d3ee83 ad94fc8 2d3ee83 239afdd 2ae55e9 239afdd eb0c0ed 239afdd 2ae55e9 eb0c0ed 2ae55e9 239afdd ad94fc8 239afdd 2ae55e9 ad94fc8 2d3ee83 280ff7d ad94fc8 2d3ee83 ad94fc8 2d3ee83 ad94fc8 e7b8f47 2d3ee83 ad94fc8 2d3ee83 ad94fc8 0cb0031 239afdd 2ae55e9 239afdd eb0c0ed 239afdd 2ae55e9 eb0c0ed 2ae55e9 239afdd 2ae55e9 ad94fc8 2d3ee83 d10d482 fa221c9 239afdd ad94fc8 f0c5d5e ad94fc8 f0c5d5e ad94fc8 f0c5d5e ad94fc8 f0c5d5e f57d2d5 f0c5d5e f57d2d5 d10d482 f0c5d5e d10d482 f0c5d5e d10d482 f0c5d5e d10d482 f0c5d5e d10d482 ad94fc8 f0c5d5e ad94fc8 4425968 2d3ee83 ad94fc8 4b18966 ad94fc8 4b18966 ad94fc8 4b18966 7b6e6d3 4b18966 ad94fc8 4b18966 fa221c9 839677f 4b18966 1147115 4b18966 6475b9d 4b18966 dd433e4 4b18966 f0c5d5e 6475b9d 4b18966 ad94fc8 4700c13 ad94fc8 839677f ad94fc8 839677f ad94fc8 280ff7d ad94fc8 67040c8 ad94fc8 fc07c00 ad94fc8 7ae2e5a ad94fc8 7ae2e5a ad94fc8 7ae2e5a ad94fc8 280ff7d 2d3ee83 dec2486 2d3ee83 ad94fc8 2d3ee83 ad94fc8 2d3ee83 280ff7d 2d3ee83 280ff7d 2d3ee83 dd433e4 2d3ee83 fa221c9 2d3ee83 4b18966 2d3ee83 ad94fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
import os
import subprocess
import signal
import tempfile
from pathlib import Path
from textwrap import dedent
from typing import Optional, Tuple, List, Union
from dataclasses import dataclass, field
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
@dataclass
class QuantizationConfig:
"""Configuration for model quantization."""
method: str
use_imatrix: bool = False
imatrix_method: str = "IQ4_NL"
train_data: str = ""
quant_embedding: bool = False
embedding_tensor_method: str = "Q8_0"
leave_output: bool = False
quant_output: bool = False
output_tensor_method: str = "Q8_0"
# Generated values - These will be set during processing
fp16_model: str = field(default="", init=False)
quantized_gguf: str = field(default="", init=False)
imatrix_file: str = field(default="", init=False)
@dataclass
class SplitConfig:
"""Configuration for model splitting."""
enabled: bool = False
max_tensors: int = 256
max_size: Optional[str] = None
@dataclass
class OutputConfig:
"""Configuration for output settings."""
private_repo: bool = False
repo_name: str = ""
filename: str = ""
@dataclass
class ModelProcessingConfig:
"""Configuration for the entire model processing pipeline."""
token: str
model_id: str
model_name: str
outdir: str
quant_config: QuantizationConfig
split_config: SplitConfig
output_config: OutputConfig
# Generated values - These will be set during processing
new_repo_url: str = field(default="", init=False)
new_repo_id: str = field(default="", init=False)
class GGUFConverterError(Exception):
"""Custom exception for GGUF conversion errors."""
pass
class HuggingFaceModelProcessor:
"""Handles the processing of Hugging Face models to GGUF format."""
ERROR_LOGIN = "You must be logged in to use GGUF-my-repo."
DOWNLOAD_FOLDER = "./downloads"
OUTPUT_FOLDER = "./outputs"
CALIBRATION_FILE = "calibration_data_v5_rc.txt"
QUANTIZE_TIMEOUT=86400
HF_TO_GGUF_TIMEOUT=3600
IMATRIX_TIMEOUT=86400
SPLIT_TIMEOUT=3600
KILL_TIMEOUT=5
def __init__(self):
self.SPACE_ID = os.environ.get("SPACE_ID", "")
self.SPACE_URL = f"https://{self.SPACE_ID.replace('/', '-')}.hf.space/" if self.SPACE_ID else "http://localhost:7860/"
self.HF_TOKEN = os.environ.get("HF_TOKEN")
self.RUN_LOCALLY = os.environ.get("RUN_LOCALLY")
# Create necessary folders
self._create_folder(self.DOWNLOAD_FOLDER)
self._create_folder(self.OUTPUT_FOLDER)
def _create_folder(self, folder_name: str) -> str:
"""Create a folder if it doesn't exist."""
if not os.path.exists(folder_name):
print(f"Creating folder: {folder_name}")
os.makedirs(folder_name)
return folder_name
def _validate_token(self, oauth_token: Optional[gr.OAuthToken]) -> str:
"""Validate the OAuth token and return the token string."""
if oauth_token is None or oauth_token.token is None:
raise GGUFConverterError(self.ERROR_LOGIN)
try:
whoami(oauth_token.token)
return oauth_token.token
except Exception as e:
raise GGUFConverterError(self.ERROR_LOGIN)
def _escape_html(self, s: str) -> str:
"""Escape HTML characters for safe display."""
replacements = [
("&", "&"),
("<", "<"),
(">", ">"),
('"', """),
("\n", "<br/>")
]
for old, new in replacements:
s = s.replace(old, new)
return s
def _get_model_creator(self, model_id: str) -> str:
"""Extract model creator from model ID."""
return model_id.split('/')[0]
def _get_model_name(self, model_id: str) -> str:
"""Extract model name from model ID."""
return model_id.split('/')[-1]
def _upload_file(self, processing_config: ModelProcessingConfig, path_or_fileobj: str, path_in_repo: str) -> None:
"""Upload a file to Hugging Face repository."""
if self.RUN_LOCALLY == "1":
print("Skipping upload...")
return
api = HfApi(token=processing_config.token)
api.upload_file(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
repo_id=processing_config.new_repo_id,
)
def _generate_importance_matrix(self, quant_config: QuantizationConfig) -> None:
"""Generate importance matrix for quantization."""
if not os.path.isfile(quant_config.fp16_model):
raise GGUFConverterError(f"Model file not found: {quant_config.fp16_model}")
if quant_config.train_data:
train_data_path = quant_config.train_data
else:
train_data_path = self.CALIBRATION_FILE
if not os.path.isfile(train_data_path):
raise GGUFConverterError(f"Training data file not found: {train_data_path}")
print(f"Training data file path: {train_data_path}")
print("Running imatrix command...")
imatrix_command = [
"llama-imatrix",
"-m", quant_config.fp16_model,
"-f", train_data_path,
"-ngl", "99",
"--output-frequency", "10",
"-o", quant_config.imatrix_file,
]
process = subprocess.Popen(imatrix_command, shell=False, stderr=subprocess.STDOUT)
try:
process.wait(timeout=self.IMATRIX_TIMEOUT)
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=self.KILL_TIMEOUT)
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forcefully terminating process...")
process.kill()
raise GGUFConverterError("Error generating imatrix: Operation timed out.")
if process.returncode != 0:
raise GGUFConverterError(f"Error generating imatrix: code={process.returncode}.")
print(f"Importance matrix generation completed: {os.path.abspath(quant_config.imatrix_file)}")
def _split_and_upload_model(self, processing_config: ModelProcessingConfig) -> None:
"""Split large model files and upload shards."""
quant_config = processing_config.quant_config
split_config = processing_config.split_config
print(f"Model path: {quant_config.quantized_gguf}")
print(f"Output dir: {processing_config.outdir}")
split_cmd = ["llama-gguf-split", "--split"]
if split_config.max_size:
split_cmd.extend(["--split-max-size", split_config.max_size])
else:
split_cmd.extend(["--split-max-tensors", str(split_config.max_tensors)])
model_path_prefix = '.'.join(quant_config.quantized_gguf.split('.')[:-1])
split_cmd.extend([quant_config.quantized_gguf, model_path_prefix])
print(f"Split command: {split_cmd}")
process = subprocess.Popen(split_cmd, shell=False, stderr=subprocess.STDOUT)
try:
process.wait(timeout=self.SPLIT_TIMEOUT)
except subprocess.TimeoutExpired:
print("Splitting timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=self.KILL_TIMEOUT)
except subprocess.TimeoutExpired:
print("Splitting timed out. Killing process...")
process.kill()
raise GGUFConverterError("Error splitting the model: Operation timed out.")
if process.returncode != 0:
raise GGUFConverterError(f"Error splitting the model: code={process.returncode}")
print("Model split successfully!")
# Remove original model file
if os.path.exists(quant_config.quantized_gguf):
os.remove(quant_config.quantized_gguf)
model_file_prefix = model_path_prefix.split('/')[-1]
print(f"Model file name prefix: {model_file_prefix}")
sharded_model_files = [
f for f in os.listdir(processing_config.outdir)
if f.startswith(model_file_prefix) and f.endswith(".gguf")
]
if not sharded_model_files:
raise GGUFConverterError("No sharded files found.")
print(f"Sharded model files: {sharded_model_files}")
for file in sharded_model_files:
file_path = os.path.join(processing_config.outdir, file)
try:
print(f"Uploading file: {file_path}")
self._upload_file(processing_config, file_path, file)
except Exception as e:
raise GGUFConverterError(f"Error uploading file {file_path}: {e}")
print("Sharded model has been uploaded successfully!")
def _download_base_model(self, processing_config: ModelProcessingConfig) -> str:
"""Download and convert Hugging Face model to GGUF FP16 format."""
print(f"Downloading model {processing_config.model_name}")
if os.path.exists(processing_config.quant_config.fp16_model):
print("Skipping fp16 conversion...")
print(f"Converted model path: {os.path.abspath(processing_config.quant_config.fp16_model)}")
return processing_config.quant_config.fp16_model
with tempfile.TemporaryDirectory(dir=self.DOWNLOAD_FOLDER) as tmpdir:
local_dir = f"{Path(tmpdir)}/{processing_config.model_name}"
print(f"Local directory: {os.path.abspath(local_dir)}")
# Download model
api = HfApi(token=processing_config.token)
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=processing_config.model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern = ["*.md", "*.json", "*.model"]
dl_pattern += [pattern]
api.snapshot_download(repo_id=processing_config.model_id, local_dir=local_dir, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Model directory contents: {os.listdir(local_dir)}")
config_dir = os.path.join(local_dir, "config.json")
adapter_config_dir = os.path.join(local_dir, "adapter_config.json")
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
raise GGUFConverterError(
'adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, '
'please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" '
'style="text-decoration:underline">GGUF-my-lora</a>.'
)
# Convert HF to GGUF
print(f"Converting to GGUF FP16: {os.path.abspath(processing_config.quant_config.fp16_model)}")
convert_command = [
"python3", "/app/convert_hf_to_gguf.py", local_dir,
"--outtype", "f16", "--outfile", processing_config.quant_config.fp16_model
]
process = subprocess.Popen(convert_command, shell=False, stderr=subprocess.STDOUT)
try:
process.wait(timeout=self.HF_TO_GGUF_TIMEOUT)
except subprocess.TimeoutExpired:
print("Conversion timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=self.KILL_TIMEOUT)
except subprocess.TimeoutExpired:
print("Conversion timed out. Killing process...")
process.kill()
raise GGUFConverterError("Error converting to fp16: Operation timed out.")
if process.returncode != 0:
raise GGUFConverterError(f"Error converting to fp16: code={process.returncode}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {os.path.abspath(processing_config.quant_config.fp16_model)}")
return processing_config.quant_config.fp16_model
def _quantize_model(self, quant_config: QuantizationConfig) -> str:
"""Quantize the GGUF model."""
quantize_cmd = ["llama-quantize"]
if quant_config.quant_embedding:
quantize_cmd.extend(["--token-embedding-type", quant_config.embedding_tensor_method])
if quant_config.leave_output:
quantize_cmd.append("--leave-output-tensor")
else:
if quant_config.quant_output:
quantize_cmd.extend(["--output-tensor-type", quant_config.output_tensor_method])
# Set imatrix file path if needed
if quant_config.use_imatrix:
self._generate_importance_matrix(quant_config)
quantize_cmd.extend(["--imatrix", quant_config.imatrix_file])
else:
print("Not using imatrix quantization.")
quantize_cmd.append(quant_config.fp16_model)
quantize_cmd.append(quant_config.quantized_gguf)
if quant_config.use_imatrix:
quantize_cmd.append(quant_config.imatrix_method)
else:
quantize_cmd.append(quant_config.method)
print(f"Quantizing model with {quantize_cmd}")
# Use Popen for quantization
process = subprocess.Popen(quantize_cmd, shell=False, stderr=subprocess.STDOUT)
try:
process.wait(timeout=self.QUANTIZE_TIMEOUT)
except subprocess.TimeoutExpired:
print("Quantization timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=self.KILL_TIMEOUT)
except subprocess.TimeoutExpired:
print("Quantization timed out. Killing process...")
process.kill()
raise GGUFConverterError("Error quantizing: Operation timed out.")
if process.returncode != 0:
raise GGUFConverterError(f"Error quantizing: code={process.returncode}")
print(f"Quantized successfully with {quant_config.imatrix_method if quant_config.use_imatrix else quant_config.method} option!")
print(f"Quantized model path: {os.path.abspath(quant_config.quantized_gguf)}")
return quant_config.quantized_gguf
def _create_empty_repo(self, processing_config: ModelProcessingConfig):
api = HfApi(token=processing_config.token)
new_repo_url = api.create_repo(
repo_id=processing_config.output_config.repo_name,
exist_ok=True,
private=processing_config.output_config.private_repo
)
processing_config.new_repo_url = new_repo_url.url
processing_config.new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", processing_config.new_repo_url)
return new_repo_url
def _generate_readme(self, processing_config: ModelProcessingConfig) -> str:
"""Generate README.md for the quantized model."""
creator = self._get_model_creator(processing_config.model_id)
username = whoami(processing_config.token)["name"]
try:
card = ModelCard.load(processing_config.model_id, token=processing_config.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.extend(["llama-cpp", "gguf-my-repo"])
card.data.base_model = processing_config.model_id
card.text = dedent(
f"""
# {processing_config.model_name}
**Model creator:** [{creator}](https://huggingface.co/{creator})<br/>
**Original model**: [{processing_config.model_id}](https://huggingface.co/{processing_config.model_id})<br/>
**GGUF quantization:** provided by [{username}](https:/huggingface.co/{username}) using `llama.cpp`<br/>
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
## Use with Ollama
```bash
ollama run "hf.co/{processing_config.new_repo_id}:<quantization>"
```
## Use with LM Studio
```bash
lms load "{processing_config.new_repo_id}"
```
## Use with llama.cpp CLI
```bash
llama-cli --hf-repo "{processing_config.new_repo_id}" --hf-file "{processing_config.output_config.filename}" -p "The meaning to life and the universe is"
```
## Use with llama.cpp Server:
```bash
llama-server --hf-repo "{processing_config.new_repo_id}" --hf-file "{processing_config.output_config.filename}" -c 4096
```
"""
)
readme_path = f"{processing_config.outdir}/README.md"
card.save(readme_path)
return readme_path
def process_model(self, processing_config: ModelProcessingConfig) -> Tuple[str, str]:
"""Main method to process a model through the entire pipeline."""
quant_config = processing_config.quant_config
split_config = processing_config.split_config
output_config = processing_config.output_config
print(f"Current working directory: {os.path.abspath(os.getcwd())}")
# Download and convert base model
self._download_base_model(processing_config)
# Quantize the model
self._quantize_model(quant_config)
# Create empty repo
self._create_empty_repo(processing_config)
# Upload model
if split_config.enabled:
print(f"Splitting quantized model: {os.path.abspath(quant_config.quantized_gguf)}")
self._split_and_upload_model(processing_config)
else:
try:
print(f"Uploading quantized model: {os.path.abspath(quant_config.quantized_gguf)}")
self._upload_file(processing_config, quant_config.quantized_gguf, output_config.filename)
except Exception as e:
raise GGUFConverterError(f"Error uploading quantized model: {e}")
# Upload imatrix if it exists
if quant_config.use_imatrix and os.path.isfile(quant_config.imatrix_file):
try:
print(f"Uploading imatrix.dat: {os.path.abspath(quant_config.imatrix_file)}")
self._upload_file(processing_config, quant_config.imatrix_file, f"{processing_config.model_name}-imatrix.gguf")
except Exception as e:
raise GGUFConverterError(f"Error uploading imatrix.dat: {e}")
# Upload README.md
readme_path = self._generate_readme(processing_config)
self._upload_file(processing_config, readme_path, "README.md")
print(f"Uploaded successfully with {quant_config.imatrix_method if quant_config.use_imatrix else quant_config.method} option!")
class GGUFConverterUI:
"""Gradio UI for the GGUF Converter."""
def __init__(self):
self.processor = HuggingFaceModelProcessor()
self.css = """/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Initialize components
self._initialize_components()
self._setup_interface()
def _initialize_components(self):
"""Initialize all UI components."""
#####
# Base model section
#####
self.model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
#####
# Quantization section
#####
self.use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
self.q_method = gr.Dropdown(
choices=["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "BF16"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True
)
self.imatrix_q_method = gr.Dropdown(
choices=["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
self.train_data_file = gr.File(
label="Training Data File",
file_types=[".txt"],
visible=False
)
#####
# Advanced Options section
#####
self.split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
self.split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
self.split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
visible=False
)
self.leave_output = gr.Checkbox(
value=False,
label="Leave output tensor",
info="Leaves output.weight un(re)quantized"
)
self.quant_embedding = gr.Checkbox(
value=False,
label="Quant embeddings tensor",
info="Quantize embeddings tensor separately"
)
self.embedding_tensor_method = gr.Dropdown(
choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
label="Embeddings Quantization Method",
info="use a specific quant type for the token embeddings tensor",
value="Q8_0",
filterable=False,
visible=False
)
self.quant_output = gr.Checkbox(
value=False,
label="Quant output tensor",
info="Quantize output tensor separately"
)
self.output_tensor_method = gr.Dropdown(
choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"],
label="Output Quantization Method",
info="use a specific quant type for the output.weight tensor",
value="Q8_0",
filterable=False,
visible=False
)
#####
# Output Settings section
#####
self.private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
self.repo_name = gr.Textbox(
label="Output Repository Name",
info="Set your repository name",
max_lines=1
)
self.gguf_name = gr.Textbox(
label="Output File Name",
info="Set output file name",
max_lines=1
)
#####
# Buttons section
#####
self.clear_btn = gr.ClearButton(
value="Clear",
variant="secondary",
components=[
self.model_id,
self.q_method,
self.use_imatrix,
self.imatrix_q_method,
self.private_repo,
self.train_data_file,
self.leave_output,
self.quant_embedding,
self.embedding_tensor_method,
self.quant_output,
self.output_tensor_method,
self.split_model,
self.split_max_tensors,
self.split_max_size,
self.repo_name,
self.gguf_name,
]
)
self.submit_btn = gr.Button(
value="Submit",
variant="primary"
)
#####
# Outputs section
#####
self.output_label = gr.Markdown(label="output")
self.output_image = gr.Image(
show_label=False,
show_download_button=False,
interactive=False
)
@staticmethod
def _update_output_repo(model_id: str, oauth_token: Optional[gr.OAuthToken]) -> str:
"""Update output repository name based on model and user."""
if oauth_token is None or not oauth_token.token:
return ""
if not model_id:
return ""
try:
username = whoami(oauth_token.token)["name"]
model_name = model_id.split('/')[-1]
return f"{username}/{model_name}-GGUF"
except:
return ""
@staticmethod
def _update_output_filename(model_id: str, use_imatrix: bool, q_method: str, imatrix_q_method: str) -> str:
"""Update output filename based on model and quantization settings."""
if not model_id:
return ""
model_name = model_id.split('/')[-1]
if use_imatrix:
return f"{model_name}-{imatrix_q_method.upper()}-imat.gguf"
return f"{model_name}-{q_method.upper()}.gguf"
def _setup_interface(self):
"""Set up the Gradio interface."""
with gr.Blocks(css=self.css) as self.demo:
#####
# Layout
#####
gr.Markdown(HuggingFaceModelProcessor.ERROR_LOGIN)
gr.LoginButton(min_width=250)
gr.HTML("<h1 style=\"text-aling:center;\">Create your own GGUF Quants!</h1>")
gr.Markdown(f"The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.<br/>Use via {self.processor.SPACE_URL}")
with gr.Row():
with gr.Column() as inputs:
gr.Markdown("### Model Configuration")
self.model_id.render()
with gr.Column():
self.use_imatrix.render()
self.q_method.render()
self.imatrix_q_method.render()
self.train_data_file.render()
gr.Markdown("### Advanced Options")
self.quant_embedding.render()
self.embedding_tensor_method.render()
self.leave_output.render()
self.quant_output.render()
self.output_tensor_method.render()
self.split_model.render()
with gr.Row() as split_options:
self.split_max_tensors.render()
self.split_max_size.render()
gr.Markdown("### Output Settings")
gr.Markdown("You can customize settings for your GGUF repo.")
self.private_repo.render()
with gr.Row():
self.repo_name.render()
self.gguf_name.render()
# Buttons
with gr.Row() as buttons:
self.clear_btn.render()
self.submit_btn.render()
with gr.Column() as outputs:
self.output_label.render()
self.output_image.render()
#####
# Event handlers
#####
self.submit_btn.click(
fn=self._process_model_wrapper,
inputs=[
self.model_id,
self.q_method,
self.use_imatrix,
self.imatrix_q_method,
self.private_repo,
self.train_data_file,
self.repo_name,
self.gguf_name,
self.quant_embedding,
self.embedding_tensor_method,
self.leave_output,
self.quant_output,
self.output_tensor_method,
self.split_model,
self.split_max_tensors,
self.split_max_size
],
outputs=[
self.output_label,
self.output_image,
],
)
#####
# OnChange handlers
#####
self.use_imatrix.change(
fn=lambda use_imatrix: [gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)],
inputs=self.use_imatrix,
outputs=[self.q_method, self.imatrix_q_method, self.train_data_file]
)
self.split_model.change(
fn=lambda split_model: [gr.update(visible=split_model), gr.update(visible=split_model)],
inputs=self.split_model,
outputs=[self.split_max_tensors, self.split_max_size]
)
self.quant_embedding.change(
fn=lambda quant_embedding: gr.update(visible=quant_embedding),
inputs=self.quant_embedding,
outputs=[self.embedding_tensor_method]
)
self.leave_output.change(
fn=lambda leave_output, quant_output: [gr.update(visible=not leave_output), gr.update(visible=not leave_output and quant_output)],
inputs=[self.leave_output, self.leave_output],
outputs=[self.quant_output, self.output_tensor_method]
)
self.quant_output.change(
fn=lambda quant_output: [gr.update(visible=not quant_output), gr.update(visible=quant_output)],
inputs=self.quant_output,
outputs=[self.leave_output, self.output_tensor_method]
)
self.model_id.change(
fn=self._update_output_repo,
inputs=[self.model_id],
outputs=[self.repo_name]
)
self.model_id.change(
fn=self._update_output_filename,
inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method],
outputs=[self.gguf_name]
)
self.use_imatrix.change(
fn=self._update_output_filename,
inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method],
outputs=[self.gguf_name]
)
self.q_method.change(
fn=self._update_output_filename,
inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method],
outputs=[self.gguf_name]
)
self.imatrix_q_method.change(
fn=self._update_output_filename,
inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method],
outputs=[self.gguf_name]
)
def _process_model_wrapper(self, model_id: str, q_method: str, use_imatrix: bool,
imatrix_q_method: str, private_repo: bool, train_data_file,
repo_name: str, gguf_name: str, quant_embedding: bool,
embedding_tensor_method: str, leave_output: bool,
quant_output: bool, output_tensor_method: str,
split_model: bool, split_max_tensors, split_max_size: str, oauth_token: Optional[gr.OAuthToken]) -> Tuple[str, str]:
"""Wrapper for the process_model method to handle the conversion using ModelProcessingConfig."""
try:
# Validate token and get token string
token = self.processor._validate_token(oauth_token)
# Create configuration objects
quant_config = QuantizationConfig(
method=q_method,
use_imatrix=use_imatrix,
imatrix_method=imatrix_q_method,
train_data=train_data_file.name,
quant_embedding=quant_embedding,
embedding_tensor_method=embedding_tensor_method,
leave_output=leave_output,
quant_output=quant_output,
output_tensor_method=output_tensor_method
)
split_config = SplitConfig(
enabled=split_model,
max_tensors=split_max_tensors if isinstance(split_max_tensors, int) else 256,
max_size=split_max_size
)
output_config = OutputConfig(
private_repo=private_repo,
repo_name=repo_name,
filename=gguf_name
)
model_name = self.processor._get_model_name(model_id)
with tempfile.TemporaryDirectory(dir=self.processor.OUTPUT_FOLDER) as outDirObj:
outdir = (
self.processor._create_folder(os.path.join(self.processor.OUTPUT_FOLDER, model_name))
if self.processor.RUN_LOCALLY == "1"
else Path(outDirObj)
)
quant_config.fp16_model = f"{outdir}/{model_name}-fp16.gguf"
quant_config.imatrix_file = f"{outdir}/{model_name}-imatrix.gguf"
quant_config.quantized_gguf = f"{outdir}/{gguf_name}"
processing_config = ModelProcessingConfig(
token=token,
model_id=model_id,
model_name=model_name,
outdir=outdir,
quant_config=quant_config,
split_config=split_config,
output_config=output_config
)
# Call the processor's main method with the config object
self.processor.process_model(processing_config)
return (
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{processing_config.new_repo_url}" target="_blank" style="text-decoration:underline">{processing_config.new_repo_id}</a>',
"llama.png",
)
except Exception as e:
print(f"Error processing model: {e}")
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{self.processor._escape_html(str(e))}</pre>', "error.png")
def launch(self):
"""Launch the Gradio interface."""
# Set up space restart scheduler
def restart_space():
HfApi().restart_space(repo_id=self.processor.SPACE_ID, token=self.processor.HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
self.demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
# Main execution
if __name__ == "__main__":
ui = GGUFConverterUI()
ui.launch()
|