File size: 18,789 Bytes
772f8cb
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
c145ae6
 
772f8cb
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
 
 
 
 
 
 
c145ae6
772f8cb
 
 
 
 
25f7781
 
 
 
772f8cb
 
 
 
 
 
 
25f7781
 
 
 
772f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c145ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f7781
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from prompt import Prompt
from openai import OpenAI
from fuzzywuzzy import fuzz
from fuzzywuzzy import process

import gradio as gr
import pandas as pd
import os,json

class Backend:
    def __init__(self):
        self.agent = OpenAI()
        self.prompt = Prompt()

    def read_file_single(self, file):
        # read the file
        if file is not None:
            with open(file.name, 'r') as f:
                text = f.read()
        else:
            raise gr.Error("You need to upload a file first")
        return text
    
    def phrase_pdf(self, file_path):
        from langchain.document_loaders import UnstructuredPDFLoader
        loader = UnstructuredPDFLoader(file_path, model = 'elements')
        file = loader.load()
        return file[0].page_content

    def read_file(self, files):
        # read the file
        text_list = []
        self.filename_list = []
        if files is not None:
            for file in files:
                if file.name.split('.')[-1] == 'pdf':
                    # convert pdf to txt
                    text = self.phrase_pdf(file.name)
                    
                else:
                    with open(file.name, 'r', encoding='utf-8') as f:
                        text = f.read()

                text_list.append(text)
                self.filename_list.append(file.name.split('\\')[-1])
        else:
            raise gr.Error("You need to upload a file first")
        return text_list
    
    def highlight_text(self, text, highlight_list):
        # Find the original sentences
        # Split the passage into sentences
        # sentences_in_passage = text.replace('\n', '')
        sentences_in_passage = text.split('.')
        sentences_in_passage = [i.split('\n') for i in sentences_in_passage]
        new_sentences_in_passage = []
        for i in sentences_in_passage:
            new_sentences_in_passage = new_sentences_in_passage + i
        new_sentences_in_passage = [i for i in new_sentences_in_passage if len(i) > 10]

        # hightlight the reference
        for hl in highlight_list:
            # Find the best match using fuzzy matching
            best_match = process.extractOne(hl, new_sentences_in_passage, scorer=fuzz.partial_ratio)
            text = text.replace(best_match[0], f'<mark style="background: #A5D2F1">{best_match[0]}</mark><mark style="background: #FFC0CB"><font color="red"> (match score:{best_match[1]})</font></mark>')

        # add line break
        text = text.replace('\n', f" <br /> ")

        # add scroll bar
        text = f'<div style="height: 600px; overflow: auto;">{text}</div>'

        return text
    
    def process_file_online(self, file, questions, openai_key, progress = gr.Progress()):
        # record the questions
        self.questions = questions

        # get the text_list
        self.text_list = self.read_file(file)

        # make the prompt
        prompt_list = [self.prompt.get(text, questions, 'v3') for text in self.text_list]

        # interact with openai
        self.res_list = []
        for prompt in progress.tqdm(prompt_list, desc = 'Generating answers...'):
            res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key)
            res = self.prompt.process_result(res, 'v3')
            self.res_list.append(res)

        # Use the first file as default
        # Use the first question for multiple questions
        gpt_res = self.res_list[0]
        self.gpt_result = gpt_res

        self.current_question = 0
        self.totel_question = len(res.keys())
        self.current_passage = 0
        self.total_passages = len(self.res_list)

        # make a dataframe to record everything
        self.ori_answer_df = pd.DataFrame()
        self.answer_df = pd.DataFrame()
        for i, res in enumerate(self.res_list):
            tmp = pd.DataFrame(res).T
            tmp = tmp.reset_index()
            tmp = tmp.rename(columns={"index":"question_id"})
            tmp['filename'] = self.filename_list[i]
            tmp['question'] = self.questions
            self.ori_answer_df = pd.concat([tmp, self.ori_answer_df])
            self.answer_df = pd.concat([tmp, self.answer_df])

        # default fist question
        res = res['Question 1']
        question = self.questions[self.current_question]
        self.answer = res['answer']
        self.text = self.text_list[0]
        self.highlighted_out = res['original sentences']
        highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
        self.highlighted_out = '\n'.join(self.highlighted_out)

        file_name = self.filename_list[self.current_passage]
        
        return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, self.answer, self.highlighted_out
    
    def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference):
        if not hasattr(self, 'clicked_correct_answer'):
            raise gr.Error("You need to judge whether the generated answer is correct first")

        if not hasattr(self, 'clicked_correct_reference'):
            raise gr.Error("You need to judge whether the highlighted reference is correct first")

        if not hasattr(self, 'answer_df'):
            raise gr.Error("You need to submit the document first")
        
        if self.current_question >= self.totel_question or self.current_question < 0:
            raise gr.Error("No more questions, please return back")
                
        # record the answer
        condition = (self.answer_df['question_id'] == f'Question {self.current_question + 1}' ) & \
            (self.answer_df['filename'] == self.filename_list[self.current_passage]) 
        self.answer_df.loc[condition, 'answer_correct'] = answer_correct
        self.answer_df.loc[condition, 'reference_correct'] = reference_correct

        # self.answer_df.loc[f'Question {self.current_question + 1}', 'answer_correct'] = answer_correct
        # self.answer_df.loc[f'Question {self.current_question + 1}', 'reference_correct'] = reference_correct
        
        if self.clicked_correct_answer == True:
            if hasattr(self, 'answer'):
                self.answer_df.loc[condition, 'correct_answer'] = self.answer
            else:
                raise gr.Error("You need to submit the document first")
        else:
            # self.answer_df.loc[f'Question {self.current_question + 1}', 'correct_answer'] = correct_answer
            self.answer_df.loc[condition, 'correct_answer'] = correct_answer
        
        if self.clicked_correct_reference == True:
            if hasattr(self, 'highlighted_out'):
                self.answer_df.loc[condition, 'correct_reference'] = self.highlighted_out
            else:
                raise gr.Error("You need to submit the document first")
        else:
            self.answer_df.loc[condition, 'correct_reference'] = correct_reference
        
        gr.Info('Results saved!')
        return "Results saved!"
    
    def process_next(self):
        self.current_question += 1
        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference

        if self.current_question >= self.totel_question:
            # self.current_question -= 1
            return "No more questions!", "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
        else:
            res = self.gpt_result[f'Question {self.current_question + 1}']
            question = self.questions[self.current_question]
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            file_name = self.filename_list[self.current_passage]

            return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def process_last(self):
        self.current_question -= 1

        # To make sure to correct the answer first
        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference
        
        # check question boundary
        if self.current_question < 0:
            # self.current_question += 1
            return "No more questions!", "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
        else:
            res = self.gpt_result[f'Question {self.current_question + 1}']
            question = self.questions[self.current_question]
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            file_name = self.filename_list[self.current_passage]
            return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def switch_next_passage(self):
        self.current_question = 0

        # To make sure to correct the answer first
        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference

        self.current_passage += 1
        

        if self.current_passage >= self.total_passages:
            # self.current_passage -= 1
            return "No more passages!", "No more passages!", "No more passages!", "No more passages!", "No more passages!", 'No more passages!', 'No more passages!', 'Still need to click the button above to save the results', None, None
        else:
            self.text = self.text_list[self.current_passage]
            gpt_res = self.res_list[self.current_passage]
            self.gpt_result = gpt_res
            res = self.gpt_result[f'Question {self.current_question + 1}']
            question = self.questions[self.current_question]
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            file_name = self.filename_list[self.current_passage]
            return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def switch_last_passage(self):
        self.current_question = 0

        # To make sure to correct the answer first
        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference

        self.current_passage -= 1

        if self.current_passage < 0:
            # self.current_passage += 1
            return "No more passages!", "No more passages!", "No more passages!", "No more passages!", "No more passages!", 'No more passages!', 'No more passages!', 'Still need to click the button above to save the results', None, None
        else:
            self.text = self.text_list[self.current_passage]
            gpt_res = self.res_list[self.current_passage]
            self.gpt_result = gpt_res
            res = self.gpt_result[f'Question {self.current_question + 1}']
            question = self.questions[self.current_question]
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            file_name = self.filename_list[self.current_passage]
            return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def download_answer(self, path = './tmp', name = 'answer.xlsx'):
        os.makedirs(path, exist_ok = True)
        path = os.path.join(path, name)
        # self.ori_answer_df['questions'] = self.questions
        if not hasattr(self, 'ori_answer_df'):
            raise gr.Error("You need to submit the document first")
        else:
            self.ori_answer_df.to_excel(path, index = False)

        return path
    
    def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'):
        os.makedirs(path, exist_ok = True)
        path = os.path.join(path, name)
        # self.answer_df['questions'] = self.questions
        if not hasattr(self, 'answer_df'):
            raise gr.Error("You need to submit the document first")
        else:
            self.answer_df.to_excel(path, index = False)

        return path
    
    def change_correct_answer(self, correctness):
        if correctness == "Correct":
            self.clicked_correct_answer = True
            return "No need to change"
        else:
            if hasattr(self, 'answer'):
                self.clicked_correct_answer = False
                return self.answer
            else:
                return "No answer yet, you need to submit the document first"   
        
    def change_correct_reference(self, correctness):
        if correctness == "Correct":
            self.clicked_correct_reference = True
            return "No need to change"
        else:
            if hasattr(self, 'highlighted_out'):
                self.clicked_correct_reference = False
                return self.highlighted_out
            else:
                return "No answer yet, you need to submit the document first"

    def phase_df(self, df):
        df = json.loads(df.T.to_json())
        res_list = []
        for key, item in df.items():
            tmp_res_list = {}

            tep_res_list_q1 = {
                'answer': item['Question 1'],
                'original sentences': eval(item['Question 1_original_sentences']),
            }
            tep_res_list_q2 = {
                'answer': item['Question 2'],
                'original sentences': eval(item['Question 2_original_sentences']),
            }
            tep_res_list_q3 = {
                'answer': item['Question 3'],
                'original sentences': eval(item['Question 3_original_sentences']),
            }
            tep_res_list_q4 = {
                'answer': item['intervention_1'],
                'original sentences': eval(item['Question 4intervention_1_original_sentences']),
            }
            tep_res_list_q5 = {
                'answer': item['intervention_2'],
                'original sentences': eval(item['Question 4intervention_2_original_sentences']),
            }
            tep_res_list_q6 = {
                'answer': item['Question 5'],
                'original sentences': eval(item['Question 5_original_sentences']),
            }
            tmp_res_list['Question 1'] = tep_res_list_q1
            tmp_res_list['Question 2'] = tep_res_list_q2
            tmp_res_list['Question 3'] = tep_res_list_q3
            tmp_res_list['Question 4'] = tep_res_list_q4
            tmp_res_list['Question 5'] = tep_res_list_q5
            tmp_res_list['Question 6'] = tep_res_list_q6
            res_list.append(tmp_res_list)
        return res_list

    def process_file_offline(self, questions):
        # record the questions
        self.questions = questions

        # get the text_list
        df = pd.read_csv('results_all.csv')

        # make the prompt
        self.res_list = self.phase_df(df)


        txt_root_path = './20230808-AI coding-1st round'
        self.filename_list = df['fn'].tolist()
        self.text_list = []
        for file in self.filename_list:
            text_path = os.path.join(txt_root_path, file)
            with open(text_path, 'r', encoding='utf-8') as f:
                text = f.read()
            self.text_list.append(text)

        # Use the first file as default
        # Use the first question for multiple questions
        gpt_res = self.res_list[0]
        self.gpt_result = gpt_res

        self.current_question = 0
        self.totel_question = len(self.res_list[0].keys())
        self.current_passage = 0
        self.total_passages = len(self.res_list)

        # make a dataframe to record everything
        self.ori_answer_df = pd.DataFrame()
        self.answer_df = pd.DataFrame()
        for i, res in enumerate(self.res_list):
            tmp = pd.DataFrame(res).T
            tmp = tmp.reset_index()
            tmp = tmp.rename(columns={"index":"question_id"})
            tmp['filename'] = self.filename_list[i]
            tmp['question'] = self.questions
            self.ori_answer_df = pd.concat([tmp, self.ori_answer_df])
            self.answer_df = pd.concat([tmp, self.answer_df])

        # default fist question
        gpt_res = gpt_res['Question 1']
        question = self.questions[self.current_question]
        self.answer = gpt_res['answer']
        self.text = self.text_list[0]
        self.highlighted_out = gpt_res['original sentences']
        highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
        self.highlighted_out = '\n'.join(self.highlighted_out)

        file_name = self.filename_list[self.current_passage]
        
        return file_name, question, self.answer, self.highlighted_out, highlighted_out_html, self.answer, self.highlighted_out