File size: 16,706 Bytes
f079b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc62443
f079b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os, json
import gradio as gr
import pandas as pd

QUESTIONS = [
    "What is the DOI of this study?",
    "What is the Citation ID of this study?",
    "What is the First author of this study?",
    "What is the year of this study?",
    "What is the animal type of this study?",
    "What is the exposure age of this study?",
    "Is there any behavior test done in this study?",
    "What's the Intervention 1's name of this study?(anesthetics only)",
    "What's the Intervention 2's name of this study?(anesthetics only)",
    "What's the genetic chain of this study?",
]

template = '''We now have a following <document> in the medical field:

"""
{}
"""
We have some introduction here:

1. DOI: The DOI link for the article, usually can be found in the first line of the .txt file for the article. E.g., “DOI: 10.3892/mmr.2019.10397”.
2. Citation ID: The number in the file name. E.g., “1134”.
3. First author: The last name in the file name. E.g., “Guan”.
4. Year: The year in the file name. E.g., “2019”.
5. Animal type: The rodent type used in the article, should be one of the choices: mice, rats. E.g., “rats”.
6. Exposure age: The age when the animals were exposed to anesthetics, should be mentioned as "PND1", "PND7","postnatal day 7", "Gestational day 21", etc, which should be extract as: 'PND XX' , 'Gestational day xx'. E.g., “PND7”.
7. Behavior test: Whether there is any behavior test in the article, should be one of the choices: "Y", "N". "Y" is chosen if there are any of the behavior tests described and done in the article, which mentioned as: "Open field test", "Morris water task", "fear conditioning test", "Dark/light avoidance"; "passive/active avoidance test"; "elevated maze", "Forced swim test", "Object recognition test", "Social interaction/preference“. E.g., “N”.
8. Intervention 1 & Intervention 2: Intervention 1 and Intervention 2 are both anesthetic drugs, which listed as: "isoflurane", "sevoflurane", "desflurane", "ketamine", "propofol", "Midazolam", "Nitrous oxide“. If none, put “NA”. E.g., “propofol”.
9. Genetic chain: Genetic chain is the genetic type of the animals being used in the article, here is the examples: 
    "C57BL/6", "C57BL/6J" should be extracted as "C57BL/6"; "Sprague Dawley", "Sprague-Dawley", "SD" should be extracted as "Sprague Dawley"; "CD-1" should be extracted as "CD-1"; "Wistar/ST" should be extracted as "Wistar/ST"; "Wistar" should be extracted as "Wistar"; "FMR-1 KO" should be extracted as "FMR-1 KO“. E.g., “Sprague Dawley”.
    
We have some <question>s begin with "Question" here:
"""
{}
"""

Please finish the following task:

1. Please select the <original sentences> related the each <question> from the <document>.
2. Please use the <original sentences> to answer the <question>.
3. Please provide <original sentences> coming from the <document>.
4. Output the <answer> in the following json format:

{{
    "Question 1": {{
        "question": {{}},
        "answer": {{}},
        "original sentences": []
    }},
    "Question 2": {{
        "question": {{}},
        "answer": {{}},
        "original sentences": []
    }},
    ...
}}
'''


import requests

class OpenAI:
    def __init__(self, init_prompt = None):
        self.history = []
        if init_prompt is not None:
            self.history.append({'role': 'system', 'content': init_prompt})

    def clear_history(self):
        self.history = []

    def show_history(self):
        for message in self.history:
            print(f"{message['role']}: {message['content']}")

    def get_raw_history(self):
        return self.history

    def __call__(self, prompt, with_history = False, model = 'gpt-3.5-turbo', temperature = 0, api_key = None):
        URL = 'https://api.openai.com/v1/chat/completions'
        new_message = {'role': 'user', 'content': prompt}
        if with_history:
            self.history.append(new_message)
            messages = self.history
        else:
            messages = [new_message]

        resp = requests.post(URL, json={
            'model': model,
            'messages': messages,
            'temperature': temperature,
        }, headers={
            'Authorization': f"Bearer {api_key}"
        })
        # print(resp.json())
        self.history.append(resp.json()['choices'][0]['message'])

        return resp.json()['choices'][0]['message']['content']


class Backend:
    def __init__(self):
        self.agent = OpenAI()

    def read_file(self, file):
        # read the file
        with open(file.name, 'r') as f:
            text = f.read()
        return text

    def highlight_text(self, text, highlight_list):
        # hightlight the reference
        for hl in highlight_list:
            text = text.replace(hl, f'<mark style="background: #5FACF0">{hl}</mark>')

        # add line break
        text = text.replace('\n', f" <br /> ")

        # add scroll bar
        text = f'<div style="height: 500px; overflow: auto;">{text}</div>'

        return text

    def process_file(self, file, question, openai_key):
        # get the question
        question = [ f'Question {id_ +1 }: {q}' for id_, q in enumerate(question) if 'Input question' not in q]
        question = '\n'.join(question)

        # get the text
        self.text = self.read_file(file)

        # make the prompt
        prompt = template.format(self.text, question)

        # interact with openai
        res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key)
        res = json.loads(res)

        # for multiple questions
        self.gpt_result = res
        self.curret_question = 0
        self.totel_question = len(res.keys())

        # make a dataframe to record everything
        self.ori_answer_df = pd.DataFrame(res).T
        self.answer_df = pd.DataFrame(res).T

        # default fist question
        res = res['Question 1']
        question = res['question']
        self.answer = res['answer']
        self.highlighted_out = res['original sentences']
        highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
        self.highlighted_out = '\n'.join(self.highlighted_out)

        return question, self.answer, highlighted_out_html, self.answer, self.highlighted_out

    def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference):
        if not hasattr(self, 'clicked_correct_answer'):
            raise gr.Error("You need to judge whether the generated answer is correct first")

        if not hasattr(self, 'clicked_correct_reference'):
            raise gr.Error("You need to judge whether the highlighted reference is correct first")

        if not hasattr(self, 'answer_df'):
            raise gr.Error("You need to submit the document first")

        if self.curret_question >= self.totel_question or self.curret_question < 0:
            raise gr.Error("No more questions, please return back")

        # record the answer
        self.answer_df.loc[f'Question {self.curret_question + 1}', 'answer_correct'] = answer_correct
        self.answer_df.loc[f'Question {self.curret_question + 1}', 'reference_correct'] = reference_correct

        if self.clicked_correct_answer == True:
            if hasattr(self, 'answer'):
                self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = self.answer
            else:
                raise gr.Error("You need to submit the document first")
        else:
            self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = correct_answer

        if self.clicked_correct_reference == True:
            if hasattr(self, 'highlighted_out'):
                self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = self.highlighted_out
            else:
                raise gr.Error("You need to submit the document first")
        else:
            self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = correct_reference

        gr.Info('Results saved!')
        return "Results saved!"

    def process_next(self):
        self.curret_question += 1
        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference

        if self.curret_question >= self.totel_question:
            # self.curret_question -= 1
            return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
        else:
            res = self.gpt_result[f'Question {self.curret_question + 1}']
            question = res['question']
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def process_last(self):
        self.curret_question -= 1

        if hasattr(self, 'clicked_correct_answer'):
            del self.clicked_correct_answer
        if hasattr(self, 'clicked_correct_reference'):
            del self.clicked_correct_reference

        if self.curret_question < 0:
            # self.curret_question += 1
            return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
        else:
            res = self.gpt_result[f'Question {self.curret_question + 1}']
            question = res['question']
            self.answer = res['answer']
            self.highlighted_out = res['original sentences']
            highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
            self.highlighted_out = '\n'.join(self.highlighted_out)
            return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None

    def download_answer(self, path = './tmp', name = 'answer.xlsx'):
        os.makedirs(path, exist_ok = True)
        path = os.path.join(path, name)
        self.ori_answer_df.to_excel(path, index = False)

        return path

    def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'):
        os.makedirs(path, exist_ok = True)
        path = os.path.join(path, name)
        self.answer_df.to_excel(path, index = False)

        return path

    def change_correct_answer(self, correctness):
        if correctness == "Correct":
            self.clicked_correct_answer = True
            return "No need to change"
        else:
            if hasattr(self, 'answer'):
                self.clicked_correct_answer = False
                return self.answer
            else:
                return "No answer yet, you need to submit the document first"

    def change_correct_reference(self, correctness):
        if correctness == "Correct":
            self.clicked_correct_reference = True
            return "No need to change"
        else:
            if hasattr(self, 'highlighted_out'):
                self.clicked_correct_reference = False
                return self.highlighted_out
            else:
                return "No answer yet, you need to submit the document first"


with gr.Blocks(theme="dark") as demo:
    backend = Backend()
    with gr.Row():
        with gr.Row():
            with gr.Group():
                gr.Markdown(f'<center><h1>Input</h1></center>')
                gr.Markdown(f'<center><p>Please First Upload the File</p></center>')

                openai_key = gr.Textbox(
                        label='Enter your OpenAI API key here',
                        type='password')

                file = gr.File(label='Upload your .txt file here', file_types=['.txt'])

                questions = gr.CheckboxGroup(choices = QUESTIONS, value = QUESTIONS, label="Questions", info="Please select the question you want to ask")

                btn_submit_txt = gr.Button(value='Submit txt')
                btn_submit_txt.style(full_width=True)

            with gr.Group():
                gr.Markdown(f'<center><h1>Output</h1></center>')
                gr.Markdown(f'<center><p>The answer to your question is :</p></center>')
                question_box = gr.Textbox(label='Question')
                answer_box = gr.Textbox(label='Answer')

                highlighted_text = gr.outputs.HTML(label="Highlighted Text")
                with gr.Row():
                    btn_last_question = gr.Button(value='Last Question')
                    btn_next_question = gr.Button(value='Next Question')

            with gr.Group():
                gr.Markdown(f'<center><h1>Correct the Result</h1></center>')
                gr.Markdown(f'<center><p>Please Correct the Results</p></center>')

                with gr.Row():
                    save_results = gr.Textbox(placeholder = "Still need to click the button above to save the results", label = 'Save Results')
                with gr.Group():
                    gr.Markdown(f'<center><p>Please Choose: </p></center>')
                    answer_correct = gr.Radio(choices = ["Correct", "Incorrect"], label='Is the Generated Answer Correct?', info="Pease select whether the generated text is correct")
                    correct_answer = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Answer', interactive = True)

                    reference_correct = gr.Radio(choices = ["Correct", "Incorrect"], label="Is the Reference Correct?", info="Pease select whether the reference is correct")
                    correct_reference = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Reference', interactive = True)

                    btn_submit_correctness = gr.Button(value='Submit Correctness')
                    btn_submit_correctness.style(full_width=True)

            with gr.Group():
                gr.Markdown(f'<center><h1>Download</h1></center>')
                gr.Markdown(f'<center><p>Download the processed data and corrected data</p></center>')
                answer_file = gr.File(label='Download processed data', file_types=['.xlsx'])
                btn_download_answer = gr.Button(value='Download processed data')
                btn_download_answer.style(full_width=True)
                corrected_file = gr.File(label='Download corrected data', file_types=['.xlsx'])
                btn_download_corrected = gr.Button(value='Download corrected data')
                btn_download_corrected.style(full_width=True)


    with gr.Row():
        reset = gr.Button(value='Reset')
        reset.style(full_width=True)

    # Answer change
    answer_correct.input(
        backend.change_correct_answer,
        inputs = [answer_correct],
        outputs = [correct_answer],
    )

    reference_correct.input(
        backend.change_correct_reference,
        inputs = [reference_correct],
        outputs = [correct_reference],
    )


    # Submit button
    btn_submit_txt.click(
            backend.process_file,
            inputs=[file, questions, openai_key],
            outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference],
        )

    btn_submit_correctness.click(   # TODO
            backend.process_results,
            inputs=[answer_correct, correct_answer, reference_correct, correct_reference],
            outputs=[save_results],
        )

    # Switch question button
    btn_last_question.click(
            backend.process_last,
            outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
        )

    btn_next_question.click(
            backend.process_next,
            outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
        )

    # Download button
    btn_download_answer.click(
            backend.download_answer,
            outputs=[answer_file],
        )

    btn_download_corrected.click(
            backend.download_corrected,
            outputs=[corrected_file],
        )
demo.queue()
demo.launch()