Spaces:
Sleeping
Sleeping
File size: 16,706 Bytes
f079b05 cc62443 f079b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os, json
import gradio as gr
import pandas as pd
QUESTIONS = [
"What is the DOI of this study?",
"What is the Citation ID of this study?",
"What is the First author of this study?",
"What is the year of this study?",
"What is the animal type of this study?",
"What is the exposure age of this study?",
"Is there any behavior test done in this study?",
"What's the Intervention 1's name of this study?(anesthetics only)",
"What's the Intervention 2's name of this study?(anesthetics only)",
"What's the genetic chain of this study?",
]
template = '''We now have a following <document> in the medical field:
"""
{}
"""
We have some introduction here:
1. DOI: The DOI link for the article, usually can be found in the first line of the .txt file for the article. E.g., “DOI: 10.3892/mmr.2019.10397”.
2. Citation ID: The number in the file name. E.g., “1134”.
3. First author: The last name in the file name. E.g., “Guan”.
4. Year: The year in the file name. E.g., “2019”.
5. Animal type: The rodent type used in the article, should be one of the choices: mice, rats. E.g., “rats”.
6. Exposure age: The age when the animals were exposed to anesthetics, should be mentioned as "PND1", "PND7","postnatal day 7", "Gestational day 21", etc, which should be extract as: 'PND XX' , 'Gestational day xx'. E.g., “PND7”.
7. Behavior test: Whether there is any behavior test in the article, should be one of the choices: "Y", "N". "Y" is chosen if there are any of the behavior tests described and done in the article, which mentioned as: "Open field test", "Morris water task", "fear conditioning test", "Dark/light avoidance"; "passive/active avoidance test"; "elevated maze", "Forced swim test", "Object recognition test", "Social interaction/preference“. E.g., “N”.
8. Intervention 1 & Intervention 2: Intervention 1 and Intervention 2 are both anesthetic drugs, which listed as: "isoflurane", "sevoflurane", "desflurane", "ketamine", "propofol", "Midazolam", "Nitrous oxide“. If none, put “NA”. E.g., “propofol”.
9. Genetic chain: Genetic chain is the genetic type of the animals being used in the article, here is the examples:
"C57BL/6", "C57BL/6J" should be extracted as "C57BL/6"; "Sprague Dawley", "Sprague-Dawley", "SD" should be extracted as "Sprague Dawley"; "CD-1" should be extracted as "CD-1"; "Wistar/ST" should be extracted as "Wistar/ST"; "Wistar" should be extracted as "Wistar"; "FMR-1 KO" should be extracted as "FMR-1 KO“. E.g., “Sprague Dawley”.
We have some <question>s begin with "Question" here:
"""
{}
"""
Please finish the following task:
1. Please select the <original sentences> related the each <question> from the <document>.
2. Please use the <original sentences> to answer the <question>.
3. Please provide <original sentences> coming from the <document>.
4. Output the <answer> in the following json format:
{{
"Question 1": {{
"question": {{}},
"answer": {{}},
"original sentences": []
}},
"Question 2": {{
"question": {{}},
"answer": {{}},
"original sentences": []
}},
...
}}
'''
import requests
class OpenAI:
def __init__(self, init_prompt = None):
self.history = []
if init_prompt is not None:
self.history.append({'role': 'system', 'content': init_prompt})
def clear_history(self):
self.history = []
def show_history(self):
for message in self.history:
print(f"{message['role']}: {message['content']}")
def get_raw_history(self):
return self.history
def __call__(self, prompt, with_history = False, model = 'gpt-3.5-turbo', temperature = 0, api_key = None):
URL = 'https://api.openai.com/v1/chat/completions'
new_message = {'role': 'user', 'content': prompt}
if with_history:
self.history.append(new_message)
messages = self.history
else:
messages = [new_message]
resp = requests.post(URL, json={
'model': model,
'messages': messages,
'temperature': temperature,
}, headers={
'Authorization': f"Bearer {api_key}"
})
# print(resp.json())
self.history.append(resp.json()['choices'][0]['message'])
return resp.json()['choices'][0]['message']['content']
class Backend:
def __init__(self):
self.agent = OpenAI()
def read_file(self, file):
# read the file
with open(file.name, 'r') as f:
text = f.read()
return text
def highlight_text(self, text, highlight_list):
# hightlight the reference
for hl in highlight_list:
text = text.replace(hl, f'<mark style="background: #5FACF0">{hl}</mark>')
# add line break
text = text.replace('\n', f" <br /> ")
# add scroll bar
text = f'<div style="height: 500px; overflow: auto;">{text}</div>'
return text
def process_file(self, file, question, openai_key):
# get the question
question = [ f'Question {id_ +1 }: {q}' for id_, q in enumerate(question) if 'Input question' not in q]
question = '\n'.join(question)
# get the text
self.text = self.read_file(file)
# make the prompt
prompt = template.format(self.text, question)
# interact with openai
res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key)
res = json.loads(res)
# for multiple questions
self.gpt_result = res
self.curret_question = 0
self.totel_question = len(res.keys())
# make a dataframe to record everything
self.ori_answer_df = pd.DataFrame(res).T
self.answer_df = pd.DataFrame(res).T
# default fist question
res = res['Question 1']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, self.answer, self.highlighted_out
def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference):
if not hasattr(self, 'clicked_correct_answer'):
raise gr.Error("You need to judge whether the generated answer is correct first")
if not hasattr(self, 'clicked_correct_reference'):
raise gr.Error("You need to judge whether the highlighted reference is correct first")
if not hasattr(self, 'answer_df'):
raise gr.Error("You need to submit the document first")
if self.curret_question >= self.totel_question or self.curret_question < 0:
raise gr.Error("No more questions, please return back")
# record the answer
self.answer_df.loc[f'Question {self.curret_question + 1}', 'answer_correct'] = answer_correct
self.answer_df.loc[f'Question {self.curret_question + 1}', 'reference_correct'] = reference_correct
if self.clicked_correct_answer == True:
if hasattr(self, 'answer'):
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = self.answer
else:
raise gr.Error("You need to submit the document first")
else:
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = correct_answer
if self.clicked_correct_reference == True:
if hasattr(self, 'highlighted_out'):
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = self.highlighted_out
else:
raise gr.Error("You need to submit the document first")
else:
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = correct_reference
gr.Info('Results saved!')
return "Results saved!"
def process_next(self):
self.curret_question += 1
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
if self.curret_question >= self.totel_question:
# self.curret_question -= 1
return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.curret_question + 1}']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def process_last(self):
self.curret_question -= 1
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
if self.curret_question < 0:
# self.curret_question += 1
return "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.curret_question + 1}']
question = res['question']
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
return question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def download_answer(self, path = './tmp', name = 'answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
self.ori_answer_df.to_excel(path, index = False)
return path
def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
self.answer_df.to_excel(path, index = False)
return path
def change_correct_answer(self, correctness):
if correctness == "Correct":
self.clicked_correct_answer = True
return "No need to change"
else:
if hasattr(self, 'answer'):
self.clicked_correct_answer = False
return self.answer
else:
return "No answer yet, you need to submit the document first"
def change_correct_reference(self, correctness):
if correctness == "Correct":
self.clicked_correct_reference = True
return "No need to change"
else:
if hasattr(self, 'highlighted_out'):
self.clicked_correct_reference = False
return self.highlighted_out
else:
return "No answer yet, you need to submit the document first"
with gr.Blocks(theme="dark") as demo:
backend = Backend()
with gr.Row():
with gr.Row():
with gr.Group():
gr.Markdown(f'<center><h1>Input</h1></center>')
gr.Markdown(f'<center><p>Please First Upload the File</p></center>')
openai_key = gr.Textbox(
label='Enter your OpenAI API key here',
type='password')
file = gr.File(label='Upload your .txt file here', file_types=['.txt'])
questions = gr.CheckboxGroup(choices = QUESTIONS, value = QUESTIONS, label="Questions", info="Please select the question you want to ask")
btn_submit_txt = gr.Button(value='Submit txt')
btn_submit_txt.style(full_width=True)
with gr.Group():
gr.Markdown(f'<center><h1>Output</h1></center>')
gr.Markdown(f'<center><p>The answer to your question is :</p></center>')
question_box = gr.Textbox(label='Question')
answer_box = gr.Textbox(label='Answer')
highlighted_text = gr.outputs.HTML(label="Highlighted Text")
with gr.Row():
btn_last_question = gr.Button(value='Last Question')
btn_next_question = gr.Button(value='Next Question')
with gr.Group():
gr.Markdown(f'<center><h1>Correct the Result</h1></center>')
gr.Markdown(f'<center><p>Please Correct the Results</p></center>')
with gr.Row():
save_results = gr.Textbox(placeholder = "Still need to click the button above to save the results", label = 'Save Results')
with gr.Group():
gr.Markdown(f'<center><p>Please Choose: </p></center>')
answer_correct = gr.Radio(choices = ["Correct", "Incorrect"], label='Is the Generated Answer Correct?', info="Pease select whether the generated text is correct")
correct_answer = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Answer', interactive = True)
reference_correct = gr.Radio(choices = ["Correct", "Incorrect"], label="Is the Reference Correct?", info="Pease select whether the reference is correct")
correct_reference = gr.Textbox(placeholder = "Please judge on the generated answer", label = 'Correct Reference', interactive = True)
btn_submit_correctness = gr.Button(value='Submit Correctness')
btn_submit_correctness.style(full_width=True)
with gr.Group():
gr.Markdown(f'<center><h1>Download</h1></center>')
gr.Markdown(f'<center><p>Download the processed data and corrected data</p></center>')
answer_file = gr.File(label='Download processed data', file_types=['.xlsx'])
btn_download_answer = gr.Button(value='Download processed data')
btn_download_answer.style(full_width=True)
corrected_file = gr.File(label='Download corrected data', file_types=['.xlsx'])
btn_download_corrected = gr.Button(value='Download corrected data')
btn_download_corrected.style(full_width=True)
with gr.Row():
reset = gr.Button(value='Reset')
reset.style(full_width=True)
# Answer change
answer_correct.input(
backend.change_correct_answer,
inputs = [answer_correct],
outputs = [correct_answer],
)
reference_correct.input(
backend.change_correct_reference,
inputs = [reference_correct],
outputs = [correct_reference],
)
# Submit button
btn_submit_txt.click(
backend.process_file,
inputs=[file, questions, openai_key],
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference],
)
btn_submit_correctness.click( # TODO
backend.process_results,
inputs=[answer_correct, correct_answer, reference_correct, correct_reference],
outputs=[save_results],
)
# Switch question button
btn_last_question.click(
backend.process_last,
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
)
btn_next_question.click(
backend.process_next,
outputs=[question_box, answer_box, highlighted_text, correct_answer, correct_reference, save_results, answer_correct, reference_correct],
)
# Download button
btn_download_answer.click(
backend.download_answer,
outputs=[answer_file],
)
btn_download_corrected.click(
backend.download_corrected,
outputs=[corrected_file],
)
demo.queue()
demo.launch() |