Spaces:
Sleeping
Sleeping
from prompt import Prompt | |
from openai import OpenAI | |
from fuzzywuzzy import fuzz | |
from fuzzywuzzy import process | |
import gradio as gr | |
import pandas as pd | |
import os | |
class Backend: | |
def __init__(self): | |
self.agent = OpenAI() | |
self.prompt = Prompt() | |
def read_file(self, file): | |
# read the file | |
if file is not None: | |
with open(file.name, 'r') as f: | |
text = f.read() | |
else: | |
raise gr.Error("You need to upload a file first") | |
return text | |
def highlight_text(self, text, highlight_list): | |
# Find the original sentences | |
# Split the passage into sentences | |
sentences_in_passage = text.split('.') | |
sentences_in_passage = [i.split('\n') for i in sentences_in_passage] | |
new_sentences_in_passage = [] | |
for i in sentences_in_passage: | |
new_sentences_in_passage =new_sentences_in_passage + i | |
# hightlight the reference | |
for hl in highlight_list: | |
# Find the best match using fuzzy matching | |
best_match = process.extractOne(hl, new_sentences_in_passage, scorer=fuzz.partial_ratio) | |
text = text.replace(best_match[0], f'<mark style="background: #A5D2F1">{best_match[0]}</mark><mark style="background: #FFC0CB"><font color="red"> (match score:{best_match[1]})</font></mark>') | |
# add line break | |
text = text.replace('\n', f" <br /> ") | |
# add scroll bar | |
text = f'<div style="height: 500px; overflow: auto;">{text}</div>' | |
return text | |
def process_file(self, file, questions, openai_key): | |
# record the questions | |
self.questions = questions | |
# get the text | |
self.text = self.read_file(file) | |
# make the prompt | |
prompt = self.prompt.get(self.text, questions, 'v3') | |
# interact with openai | |
res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key) | |
res = self.prompt.process_result(res, 'v3') | |
# for multiple questions | |
self.gpt_result = res | |
self.curret_question = 0 | |
self.totel_question = len(res.keys()) | |
# make a dataframe to record everything | |
self.ori_answer_df = pd.DataFrame(res).T | |
self.answer_df = pd.DataFrame(res).T | |
# default fist question | |
res = res['Question 1'] | |
question = self.questions[self.curret_question] | |
self.answer = res['answer'] | |
self.highlighted_out = res['original sentences'] | |
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out) | |
self.highlighted_out = '\n'.join(self.highlighted_out) | |
return question, self.answer, self.highlighted_out, highlighted_out_html, self.answer, self.highlighted_out | |
def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference): | |
if not hasattr(self, 'clicked_correct_answer'): | |
raise gr.Error("You need to judge whether the generated answer is correct first") | |
if not hasattr(self, 'clicked_correct_reference'): | |
raise gr.Error("You need to judge whether the highlighted reference is correct first") | |
if not hasattr(self, 'answer_df'): | |
raise gr.Error("You need to submit the document first") | |
if self.curret_question >= self.totel_question or self.curret_question < 0: | |
raise gr.Error("No more questions, please return back") | |
# record the answer | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'answer_correct'] = answer_correct | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'reference_correct'] = reference_correct | |
if self.clicked_correct_answer == True: | |
if hasattr(self, 'answer'): | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = self.answer | |
else: | |
raise gr.Error("You need to submit the document first") | |
else: | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_answer'] = correct_answer | |
if self.clicked_correct_reference == True: | |
if hasattr(self, 'highlighted_out'): | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = self.highlighted_out | |
else: | |
raise gr.Error("You need to submit the document first") | |
else: | |
self.answer_df.loc[f'Question {self.curret_question + 1}', 'correct_reference'] = correct_reference | |
gr.Info('Results saved!') | |
return "Results saved!" | |
def process_next(self): | |
self.curret_question += 1 | |
if hasattr(self, 'clicked_correct_answer'): | |
del self.clicked_correct_answer | |
if hasattr(self, 'clicked_correct_reference'): | |
del self.clicked_correct_reference | |
if self.curret_question >= self.totel_question: | |
# self.curret_question -= 1 | |
return "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None | |
else: | |
res = self.gpt_result[f'Question {self.curret_question + 1}'] | |
question = self.questions[self.curret_question] | |
self.answer = res['answer'] | |
self.highlighted_out = res['original sentences'] | |
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out) | |
self.highlighted_out = '\n'.join(self.highlighted_out) | |
return question, self.answer,self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None | |
def process_last(self): | |
self.curret_question -= 1 | |
if hasattr(self, 'clicked_correct_answer'): | |
del self.clicked_correct_answer | |
if hasattr(self, 'clicked_correct_reference'): | |
del self.clicked_correct_reference | |
if self.curret_question < 0: | |
# self.curret_question += 1 | |
return "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None | |
else: | |
res = self.gpt_result[f'Question {self.curret_question + 1}'] | |
question = self.questions[self.curret_question] | |
self.answer = res['answer'] | |
self.highlighted_out = res['original sentences'] | |
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out) | |
self.highlighted_out = '\n'.join(self.highlighted_out) | |
return question, self.answer, self.highlighted_out, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None | |
def download_answer(self, path = './tmp', name = 'answer.xlsx'): | |
os.makedirs(path, exist_ok = True) | |
path = os.path.join(path, name) | |
self.ori_answer_df.to_excel(path, index = False) | |
return path | |
def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'): | |
os.makedirs(path, exist_ok = True) | |
path = os.path.join(path, name) | |
self.answer_df.to_excel(path, index = False) | |
return path | |
def change_correct_answer(self, correctness): | |
if correctness == "Correct": | |
self.clicked_correct_answer = True | |
return "No need to change" | |
else: | |
if hasattr(self, 'answer'): | |
self.clicked_correct_answer = False | |
return self.answer | |
else: | |
return "No answer yet, you need to submit the document first" | |
def change_correct_reference(self, correctness): | |
if correctness == "Correct": | |
self.clicked_correct_reference = True | |
return "No need to change" | |
else: | |
if hasattr(self, 'highlighted_out'): | |
self.clicked_correct_reference = False | |
return self.highlighted_out | |
else: | |
return "No answer yet, you need to submit the document first" |