HistoryLens / app.py
omanaaja's picture
Ensure application file is placed correctly
a5b0f9e
raw
history blame
1.23 kB
import gradio as gr
import numpy as np
from keras.preprocessing import image
from Model_Load import load_model_from_files
# Load model dan label
model = load_model_from_files("model.json", "my_model.h5")
labels = [
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
]
# Fungsi preprocessing dan prediksi
def classify_image(img):
img = img.resize((224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
pred = model.predict(img_array)[0]
confidence = np.max(pred)
predicted_label = labels[np.argmax(pred)]
return f"{predicted_label} (Confidence: {confidence * 100:.2f}%)"
# Buat antarmuka Gradio
demo = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="Klasifikasi Cagar Budaya DIY",
description="Upload gambar dan model akan mengklasifikasikannya ke dalam salah satu situs budaya di Yogyakarta."
)
# Launch untuk Hugging Face Spaces
if __name__ == "__main__":
demo.launch()