Spaces:
Runtime error
Runtime error
Fixed errors
Browse files
app.py
CHANGED
|
@@ -13,11 +13,51 @@ from pytorch_lightning import seed_everything
|
|
| 13 |
|
| 14 |
from functools import partial
|
| 15 |
|
|
|
|
| 16 |
RESOLUTION = 256
|
| 17 |
MIN_SIZE = 0.01
|
| 18 |
WHITE = 255
|
| 19 |
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
DESCRIPTION = """
|
| 22 |
<p style="text-align: center; font-weight: bold;">
|
| 23 |
<span style="font-size: 28px">Bounded Attention</span>
|
|
@@ -72,14 +112,8 @@ FOOTNOTE = """
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
|
| 75 |
-
MODEL_PATH = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 76 |
-
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
| 77 |
-
model = StableDiffusionXLPipeline.from_pretrained(MODEL_PATH, scheduler=scheduler, torch_dtype=torch.float16)
|
| 78 |
-
model.unet.set_default_attn_processor()
|
| 79 |
-
model.enable_sequential_cpu_offload()
|
| 80 |
-
|
| 81 |
-
|
| 82 |
def inference(
|
|
|
|
| 83 |
boxes,
|
| 84 |
prompts,
|
| 85 |
subject_token_indices,
|
|
@@ -125,14 +159,15 @@ def inference(
|
|
| 125 |
)
|
| 126 |
|
| 127 |
register_attention_editor_diffusers(model, editor)
|
| 128 |
-
|
| 129 |
images = model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
|
| 130 |
unregister_attention_editor_diffusers(model)
|
| 131 |
model.to(torch.device("cpu"))
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
@spaces.GPU(duration=300)
|
| 135 |
def generate(
|
|
|
|
| 136 |
prompt,
|
| 137 |
subject_token_indices,
|
| 138 |
filter_token_indices,
|
|
@@ -162,7 +197,7 @@ def generate(
|
|
| 162 |
prompts = [prompt.strip(".").strip(",").strip()] * batch_size
|
| 163 |
|
| 164 |
images = inference(
|
| 165 |
-
boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
|
| 166 |
final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale,
|
| 167 |
num_iterations, loss_threshold, num_guidance_steps, seed)
|
| 168 |
|
|
@@ -217,139 +252,107 @@ def clear(batch_size):
|
|
| 217 |
|
| 218 |
|
| 219 |
def main():
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
generate_image_button
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
generate_layout_button.click(
|
| 325 |
-
draw,
|
| 326 |
-
inputs=[sketchpad],
|
| 327 |
-
outputs=[boxes, layout_image],
|
| 328 |
-
queue=False,
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
generate_image_button.click(
|
| 332 |
-
fn=generate,
|
| 333 |
-
inputs=[
|
| 334 |
-
prompt, subject_token_indices, filter_token_indices, num_tokens,
|
| 335 |
-
init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
|
| 336 |
-
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
|
| 337 |
-
seed,
|
| 338 |
-
boxes,
|
| 339 |
-
],
|
| 340 |
-
outputs=[out_images],
|
| 341 |
-
queue=True,
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
with gr.Column():
|
| 345 |
-
gr.Examples(
|
| 346 |
-
examples=[
|
| 347 |
-
["a ginger kitten and a gray puppy in a yard", "2,3;6,7", "1,4,5,8,9", "10"],
|
| 348 |
-
["a realistic photo of a highway with a semi trailer and a concrete mixer and a helicopter", "9,10;13,14;17", "1,4,5,7,8,11,12,15,16", "17"],
|
| 349 |
-
],
|
| 350 |
-
inputs=[prompt, subject_token_indices, filter_token_indices, num_tokens],
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
gr.HTML(FOOTNOTE)
|
| 354 |
-
|
| 355 |
-
demo.launch(show_api=False, show_error=True)
|
|
|
|
| 13 |
|
| 14 |
from functools import partial
|
| 15 |
|
| 16 |
+
MODEL_PATH = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 17 |
RESOLUTION = 256
|
| 18 |
MIN_SIZE = 0.01
|
| 19 |
WHITE = 255
|
| 20 |
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
|
| 21 |
|
| 22 |
+
CSS = """
|
| 23 |
+
#paper-info a {
|
| 24 |
+
color:#008AD7;
|
| 25 |
+
text-decoration: none;
|
| 26 |
+
}
|
| 27 |
+
#paper-info a:hover {
|
| 28 |
+
cursor: pointer;
|
| 29 |
+
text-decoration: none;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
.tooltip {
|
| 33 |
+
color: #555;
|
| 34 |
+
position: relative;
|
| 35 |
+
display: inline-block;
|
| 36 |
+
cursor: pointer;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.tooltip .tooltiptext {
|
| 40 |
+
visibility: hidden;
|
| 41 |
+
width: 400px;
|
| 42 |
+
background-color: #555;
|
| 43 |
+
color: #fff;
|
| 44 |
+
text-align: center;
|
| 45 |
+
padding: 5px;
|
| 46 |
+
border-radius: 5px;
|
| 47 |
+
position: absolute;
|
| 48 |
+
z-index: 1; /* Set z-index to 1 */
|
| 49 |
+
left: 10px;
|
| 50 |
+
top: 100%;
|
| 51 |
+
opacity: 0;
|
| 52 |
+
transition: opacity 0.3s;
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
.tooltip:hover .tooltiptext {
|
| 56 |
+
visibility: visible;
|
| 57 |
+
opacity: 1;
|
| 58 |
+
z-index: 9999; /* Set a high z-index value when hovering */
|
| 59 |
+
}
|
| 60 |
+
"""
|
| 61 |
DESCRIPTION = """
|
| 62 |
<p style="text-align: center; font-weight: bold;">
|
| 63 |
<span style="font-size: 28px">Bounded Attention</span>
|
|
|
|
| 112 |
"""
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
def inference(
|
| 116 |
+
model,
|
| 117 |
boxes,
|
| 118 |
prompts,
|
| 119 |
subject_token_indices,
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
register_attention_editor_diffusers(model, editor)
|
|
|
|
| 162 |
images = model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
|
| 163 |
unregister_attention_editor_diffusers(model)
|
| 164 |
model.to(torch.device("cpu"))
|
| 165 |
+
return images
|
| 166 |
|
| 167 |
|
| 168 |
@spaces.GPU(duration=300)
|
| 169 |
def generate(
|
| 170 |
+
model,
|
| 171 |
prompt,
|
| 172 |
subject_token_indices,
|
| 173 |
filter_token_indices,
|
|
|
|
| 197 |
prompts = [prompt.strip(".").strip(",").strip()] * batch_size
|
| 198 |
|
| 199 |
images = inference(
|
| 200 |
+
model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
|
| 201 |
final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale,
|
| 202 |
num_iterations, loss_threshold, num_guidance_steps, seed)
|
| 203 |
|
|
|
|
| 252 |
|
| 253 |
|
| 254 |
def main():
|
| 255 |
+
nltk.download("averaged_perceptron_tagger")
|
| 256 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
| 257 |
+
model = StableDiffusionXLPipeline.from_pretrained(MODEL_PATH, scheduler=scheduler, torch_dtype=torch.float16)
|
| 258 |
+
model.unet.set_default_attn_processor()
|
| 259 |
+
model.enable_sequential_cpu_offload()
|
| 260 |
+
|
| 261 |
+
with gr.Blocks(
|
| 262 |
+
css=CSS,
|
| 263 |
+
title="Bounded Attention demo",
|
| 264 |
+
) as demo:
|
| 265 |
+
gr.HTML(DESCRIPTION)
|
| 266 |
+
gr.HTML(COPY_LINK)
|
| 267 |
+
|
| 268 |
+
with gr.Column():
|
| 269 |
+
gr.HTML("Scroll down to see examples of the required input format.")
|
| 270 |
+
|
| 271 |
+
prompt = gr.Textbox(
|
| 272 |
+
label="Text prompt",
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
subject_token_indices = gr.Textbox(
|
| 276 |
+
label="The token indices of each subject (separate indices for the same subject with commas, and for different subjects with semicolons)",
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
filter_token_indices = gr.Textbox(
|
| 280 |
+
label="Optional: The token indices to filter, i.e. conjunctions, numbers, postional relations, etc. (if left empty, this will be automatically inferred)",
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
num_tokens = gr.Textbox(
|
| 284 |
+
label="Optional: The number of tokens in the prompt (We use this to verify your input, as sometimes rare words are split into more than one token)",
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
sketchpad = gr.Sketchpad(label="Sketch Pad (draw each bounding box in a different layer)")
|
| 289 |
+
layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False)
|
| 290 |
+
|
| 291 |
+
with gr.Row():
|
| 292 |
+
clear_button = gr.Button(value="Clear")
|
| 293 |
+
generate_layout_button = gr.Button(value="Generate layout")
|
| 294 |
+
generate_image_button = gr.Button(value="Generate image")
|
| 295 |
+
|
| 296 |
+
with gr.Row():
|
| 297 |
+
out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False)
|
| 298 |
+
|
| 299 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 300 |
+
with gr.Column():
|
| 301 |
+
gr.HTML(ADVANCED_OPTION_DESCRIPTION)
|
| 302 |
+
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (limited to one sample on current space)")
|
| 303 |
+
num_guidance_steps = gr.Slider(minimum=5, maximum=20, step=1, value=8, label="Number of timesteps to perform guidance")
|
| 304 |
+
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=25, label="Initial step size")
|
| 305 |
+
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=10, label="Final step size")
|
| 306 |
+
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
|
| 307 |
+
cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
|
| 308 |
+
self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
|
| 309 |
+
num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
|
| 310 |
+
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
|
| 311 |
+
classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
|
| 312 |
+
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
|
| 313 |
+
|
| 314 |
+
boxes = gr.State([])
|
| 315 |
+
|
| 316 |
+
clear_button.click(
|
| 317 |
+
clear,
|
| 318 |
+
inputs=[batch_size],
|
| 319 |
+
outputs=[boxes, sketchpad, layout_image, out_images],
|
| 320 |
+
queue=False,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
generate_layout_button.click(
|
| 324 |
+
draw,
|
| 325 |
+
inputs=[sketchpad],
|
| 326 |
+
outputs=[boxes, layout_image],
|
| 327 |
+
queue=False,
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
generate_image_button.click(
|
| 331 |
+
fn=partial(generate, model),
|
| 332 |
+
inputs=[
|
| 333 |
+
prompt, subject_token_indices, filter_token_indices, num_tokens,
|
| 334 |
+
init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
|
| 335 |
+
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
|
| 336 |
+
seed,
|
| 337 |
+
boxes,
|
| 338 |
+
],
|
| 339 |
+
outputs=[out_images],
|
| 340 |
+
queue=True,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
with gr.Column():
|
| 344 |
+
gr.Examples(
|
| 345 |
+
examples=[
|
| 346 |
+
["a ginger kitten and a gray puppy in a yard", "2,3;6,7", "1,4,5,8,9", "10"],
|
| 347 |
+
["a realistic photo of a highway with a semi trailer and a concrete mixer and a helicopter", "9,10;13,14;17", "1,4,5,7,8,11,12,15,16", "17"],
|
| 348 |
+
],
|
| 349 |
+
inputs=[prompt, subject_token_indices, filter_token_indices, num_tokens],
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
gr.HTML(FOOTNOTE)
|
| 353 |
+
|
| 354 |
+
demo.launch(show_api=False, show_error=True)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
if name == "__main__":
|
| 358 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|