Spaces:
Sleeping
Sleeping
File size: 19,603 Bytes
6df18f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import random
import os
import gc
import numpy as np
from PIL import Image
import cv2
from diffusers import DDIMScheduler, StableDiffusionPipeline
from pytorch_lightning import seed_everything
import torch
from scipy.ndimage import gaussian_filter
import sys
sys.path.append("./scripts")
from dyn_mask import DynMask, get_surround
from arguments import parse_args
from clicker import ClickCreate, ClickDraw
from augmentations import ImageAugmentations
from constants import Const, N
def read_image(image: Image.Image, device, dest_size):
image = image.convert("RGB")
image = image.resize(dest_size, Image.LANCZOS) if dest_size != image.size else image
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(device)
image = image * 2.0 - 1.0
return image
class Click2Mask:
def __init__(self):
self.args = parse_args()
self.device = torch.device(f"cuda:{self.args.gpu_id}")
self.load_models()
def load_models(self):
pipe = StableDiffusionPipeline.from_pretrained(
self.args.model_path, torch_dtype=torch.float16
)
self.vae = pipe.vae.to(self.device)
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder.to(self.device)
self.unet = pipe.unet.to(self.device)
self.scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
@torch.enable_grad()
def blended_latent_diffusion(
self,
dyn_mask,
create_dyn_mask,
seed,
original_rand_latents,
scheduler,
blending_percentage,
total_steps,
source_latents,
text_embeddings,
guidance_scale,
dyn_start_step_i=None,
dyn_cond_stop_step_i=None,
dyn_final_stop_step_i=None,
max_area_ratio_for_dilation=None,
last_step_threshed_latent_mask=None,
rerun_return_during_step_i=None,
):
seed_everything(seed)
use_plain_dilation_from_latent_mask = not create_dyn_mask
blending_steps_t = scheduler.timesteps[
int(len(scheduler.timesteps) * blending_percentage) :
]
latents = original_rand_latents
if create_dyn_mask:
update_steps = list(range(dyn_start_step_i, dyn_cond_stop_step_i + 1))
update_steps = [u for u in update_steps if 0 != u < len(blending_steps_t)]
first_update_step, orig_last_update_step = update_steps[0], update_steps[-1]
best_step_i = orig_last_update_step
if last_step_threshed_latent_mask is not None:
latent_mask = last_step_threshed_latent_mask
for step_i, t in enumerate(blending_steps_t):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(
latent_model_input, timestep=t
)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latent_pred_z0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if rerun_return_during_step_i == step_i:
return latents, latent_mask
# dilation for rerun + final runs
elif use_plain_dilation_from_latent_mask:
latent_mask = dyn_mask.get_plain_dilated_latent_mask(
last_step_latent_mask=last_step_threshed_latent_mask,
step_i=step_i,
total_steps=total_steps,
max_area_ratio_for_dilation=max_area_ratio_for_dilation,
rerun_dyn_start_step_i=None
if not rerun_return_during_step_i
else dyn_start_step_i,
)
# mask evolution
elif create_dyn_mask:
if step_i in update_steps:
latent_mask = dyn_mask.evolve_mask(
step_i=step_i,
decoder=self.vae.decode,
latent_pred_z0=latent_pred_z0,
source_latents=source_latents,
return_only=N.LATENT_MASK,
)
# Rerun
latents, _ = self.blended_latent_diffusion(
dyn_mask,
create_dyn_mask=False,
seed=seed,
original_rand_latents=original_rand_latents,
scheduler=scheduler,
blending_percentage=blending_percentage,
total_steps=total_steps,
source_latents=source_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
dyn_start_step_i=dyn_start_step_i,
max_area_ratio_for_dilation=Const.RERUN_MAX_AREA_RATIO_FOR_DILATION,
last_step_threshed_latent_mask=latent_mask,
rerun_return_during_step_i=step_i,
)
elif step_i < first_update_step: # initial dilation
latent_mask = dyn_mask.set_cur_masks(
step_i=step_i, return_only=N.LATENT_MASK
)
# Blending
noise_source_latents = scheduler.add_noise(
source_latents, torch.randn_like(latents), t
)
latents = latents * latent_mask + noise_source_latents * (1 - latent_mask)
if create_dyn_mask:
if step_i >= orig_last_update_step:
dyn_mask.make_cached_masks_clones(name=step_i)
dyn_mask.latents_hist[step_i] = latents
dyn_mask.latent_masks_hist[step_i] = latent_mask
if step_i >= orig_last_update_step + 2:
step_prev1_better = (
dyn_mask.closs_hist[step_i - 1]
< dyn_mask.closs_hist[step_i - 2]
)
if step_prev1_better:
best_step_i = step_i - 1
if (not step_prev1_better) or (step_i > dyn_final_stop_step_i):
# we need an extra step to calculate clip loss for last evolved mask
latents = dyn_mask.latents_hist[best_step_i]
latent_mask = dyn_mask.latent_masks_hist[best_step_i]
dyn_mask.set_masks_from_cached_masks_clones(
name=best_step_i
)
break
update_steps.append(step_i + 1)
return latents, latent_mask
@torch.no_grad()
def edit_image(
self,
image_pil,
click_pil,
prompts,
height,
width,
num_inference_steps,
num_static_inference_steps,
guidance_scale,
seed,
blending_percentage,
):
generator = torch.manual_seed(seed)
batch_size = len(prompts)
self.scheduler.set_timesteps(num_inference_steps)
image_pil = image_pil.resize((height, width), Image.LANCZOS)
image_np = np.array(image_pil)[:, :, :3]
source_latents = self._image2latent(image_np)
init_image_tensor = read_image(
image=image_pil, device=self.device, dest_size=(height, width)
)
total_steps = num_inference_steps - int(
len(self.scheduler.timesteps) * blending_percentage
)
dyn_mask = DynMask(
click_pil, self.args, init_image_tensor, self.device, total_steps
)
text_input = self.tokenizer(
prompts,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
latents = torch.randn(
(batch_size, self.unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(self.device).half()
original_rand_latents = latents
dyn_start_step_i = (
Const.DYN_START
if Const.DYN_START > 1
else round(Const.DYN_START * total_steps)
)
dyn_cond_stop_step_i = (
Const.DYN_COND_STOP
if Const.DYN_COND_STOP > 1
else round(Const.DYN_COND_STOP * total_steps)
)
dyn_final_stop_step_i = (
Const.DYN_FINAL_STOP
if Const.DYN_FINAL_STOP > 1
else round(Const.DYN_FINAL_STOP * total_steps)
)
# Evolve mask
self.blended_latent_diffusion(
dyn_mask=dyn_mask,
create_dyn_mask=True,
seed=seed,
original_rand_latents=original_rand_latents,
scheduler=self.scheduler,
blending_percentage=blending_percentage,
total_steps=total_steps,
source_latents=source_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
dyn_start_step_i=dyn_start_step_i,
dyn_cond_stop_step_i=dyn_cond_stop_step_i,
dyn_final_stop_step_i=dyn_final_stop_step_i,
)
# Final run
self.static_scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
self.static_scheduler.set_timesteps(num_static_inference_steps)
total_static_steps = num_static_inference_steps - int(
len(self.static_scheduler.timesteps) * blending_percentage
)
latents_list = []
latent_masks_list = []
seeds_list = []
seeds_to_run = random.sample(range(1, Const.MAX_SEED), Const.N_OUTS_FOR_DYN_MASK - 1)
print(f"running output (from {Const.N_OUTS_FOR_DYN_MASK}): ", end="")
for out_i in range(Const.N_OUTS_FOR_DYN_MASK):
print(f"{out_i + 1}", end="... ")
orig_l = original_rand_latents
seed_i = seed
if out_i > 0:
seed_i = seeds_to_run[out_i - 1]
orig_l = torch.randn(
(batch_size, self.unet.config.in_channels, height // 8, width // 8),
generator=torch.manual_seed(seed_i),
)
orig_l = orig_l.to(self.device).half()
latents, latent_mask = self.blended_latent_diffusion(
dyn_mask=dyn_mask,
create_dyn_mask=False,
seed=seed_i,
original_rand_latents=orig_l,
scheduler=self.static_scheduler if out_i > 0 else self.scheduler,
blending_percentage=blending_percentage,
total_steps=total_static_steps if out_i > 0 else total_steps,
source_latents=source_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
max_area_ratio_for_dilation=Const.MAX_AREA_RATIO_FOR_DILATION,
last_step_threshed_latent_mask=dyn_mask.get_curr_masks(
return_only=N.LATENT_MASK
),
)
latents_list.append(latents)
latent_masks_list.append(latent_mask)
seeds_list.append(seed_i)
print("scoring...")
results = self.score_and_arrange_results(
dyn_mask=dyn_mask,
latents_list=latents_list,
latent_masks_list=latent_masks_list,
n_runs=Const.N_RUNS_ON_SCORES,
aug_num=Const.N_AUGS_ON_SCORES,
alpha_mask_dilation_on_512=Const.ALPHA_MASK_DILATION_ON_512,
)
return results
@torch.no_grad()
def _image2latent(self, image):
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(self.device)
image = image.half()
latents = self.vae.encode(image)["latent_dist"].mean
latents = latents * 0.18215
return latents
def back_preserve_with_gauss(self, decoded_img, latent_mask, dyn_mask):
upsampled_mask = latent_mask.cpu().numpy().squeeze()
upsampled_mask = cv2.resize(
upsampled_mask.squeeze().astype(np.float32),
dyn_mask.decoded_size,
Image.LANCZOS,
)
upsampled_mask = upsampled_mask > 0.5
g_mask = gaussian_filter(
upsampled_mask.astype(float), sigma=Const.BACK_PRES_SIGMA
)
g_mask = torch.from_numpy(g_mask).half().to(self.device)
g_mask = (g_mask * Const.BACK_PRES_SCALE).clip(0, 1)
g_mask[upsampled_mask > 0.5] = 1
blended = decoded_img * g_mask + dyn_mask.init_image * (1 - g_mask)
return blended
def score_and_arrange_results(
self,
dyn_mask,
latents_list,
latent_masks_list,
n_runs,
aug_num,
alpha_mask_dilation_on_512,
):
results = []
raw_d_prompt = np.zeros((n_runs, len(latents_list)))
for i, (latents, latent_mask) in enumerate(
zip(latents_list, latent_masks_list)
):
latents = 1 / 0.18215 * latents
with torch.no_grad():
img = self.vae.decode(latents).sample
img = self.back_preserve_with_gauss(img, latent_mask, dyn_mask)
results.append({"im": img, "latent_mask": latent_mask})
alpha_mask = get_surround(
latent_mask,
alpha_mask_dilation_on_512 * (latent_mask.shape[-1] / 512.0),
self.device,
)
if aug_num is not None:
image_augmentations = ImageAugmentations(
self.args.alpha_clip_scale, aug_num
)
else:
image_augmentations = None
for run_i in range(n_runs):
raw_d_prompt[run_i][i] = dyn_mask.alpha_clip_loss(
img,
alpha_mask,
dyn_mask.text_features,
image_augmentations=image_augmentations,
augs_with_orig=(run_i == 0),
return_as_similarity=True,
)
raw_d_prompt = raw_d_prompt.mean(axis=0)
for i, res in enumerate(results):
res["dist"] = float(raw_d_prompt[i])
return results
def click2mask_app(prompt: str, image_pil: Image.Image, point512: np.ndarray):
c2m = Click2Mask()
c2m.args.prompt = prompt
results = []
for mask_i in range(c2m.args.n_masks):
print(f"\nEvolving mask {mask_i + 1}...")
seed = (
c2m.args.seed
if (c2m.args.seed and mask_i == 0)
else random.sample(range(1, Const.MAX_SEED), 1)[0]
)
seed_everything(seed)
click_draw = ClickDraw()
click_pil, _ = click_draw(image_pil, point512=point512)
mask_i_results = c2m.edit_image(
image_pil=image_pil,
click_pil=click_pil,
prompts=[c2m.args.prompt] * Const.BATCH_SIZE,
height=Const.H,
width=Const.W,
num_inference_steps=Const.NUM_INFERENCE_STEPS,
num_static_inference_steps=Const.NUM_STATIC_INFERENCE_STEPS,
guidance_scale=Const.GUIDANCE_SCALE,
seed=seed,
blending_percentage=Const.BLENDING_START_PERCENTAGE,
)
results += mask_i_results
sorted_results = sorted(results, key=lambda k: k["dist"], reverse=True)
out_img = sorted_results[0]["im"]
out_img = (out_img / 2 + 0.5).clamp(0, 1)
out_img = out_img.detach().cpu().permute(0, 2, 3, 1).numpy().squeeze()
out_img = (out_img * 255).round().astype(np.uint8)
torch.cuda.empty_cache()
gc.collect()
print(f"\nCompleted.")
return out_img
if __name__ == "__main__":
c2m = Click2Mask()
img_dir = os.path.dirname(c2m.args.image_path)
img_name = os.path.basename(os.path.normpath(c2m.args.image_path))
img_base_name = os.path.splitext(img_name)[0]
results = []
for mask_i in range(c2m.args.n_masks):
print(f"\nEvolving mask {mask_i + 1}...")
seed = (
c2m.args.seed
if (c2m.args.seed and mask_i == 0)
else random.sample(range(1, Const.MAX_SEED), 1)[0]
)
seed_everything(seed)
click_ext = [
ext
for ext in ("jpg", "JPG", "JPEG", "jpeg", "png", "PNG")
if os.path.exists(os.path.join(img_dir, f"{img_base_name}_click.{ext}"))
]
if (not click_ext) or (mask_i == 0 and c2m.args.refresh_click):
click_create = ClickCreate()
c2m.args.click_path = click_create(
c2m.args.image_path, os.path.join(img_dir, f"{img_base_name}_click.jpg")
)
else:
c2m.args.click_path = os.path.join(
img_dir, f"{img_base_name}_click.{click_ext[0]}"
)
mask_i_results = c2m.edit_image(
image_pil=Image.open(c2m.args.image_path),
click_pil=Image.open(c2m.args.click_path),
prompts=[c2m.args.prompt] * Const.BATCH_SIZE,
height=Const.H,
width=Const.W,
num_inference_steps=Const.NUM_INFERENCE_STEPS,
num_static_inference_steps=Const.NUM_STATIC_INFERENCE_STEPS,
guidance_scale=Const.GUIDANCE_SCALE,
seed=seed,
blending_percentage=Const.BLENDING_START_PERCENTAGE,
)
results += mask_i_results
os.makedirs(c2m.args.output_dir, exist_ok=True)
sorted_results = sorted(results, key=lambda k: k["dist"], reverse=True)
out_img = sorted_results[0]["im"]
out_img = (out_img / 2 + 0.5).clamp(0, 1)
out_img = out_img.detach().cpu().permute(0, 2, 3, 1).numpy().squeeze()
out_img = (out_img * 255).round().astype(np.uint8)
out_path = os.path.join(c2m.args.output_dir, f"{img_base_name}_out.jpg")
Image.fromarray(out_img).save(out_path, quality=95)
print(f"\nCompleted.\nOutput image path:\n{os.path.abspath(out_path)}")
|