"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from functools import partial from ldm.modules.diffusionmodules.util import ( make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, ) class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != self.model.device: attr = attr.to(self.model.device) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True): self.ddim_timesteps = make_ddim_timesteps( ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose, ) alphas_cumprod = self.model.alphas_cumprod assert ( alphas_cumprod.shape[0] == self.ddpm_num_timesteps ), "alphas have to be defined for each timestep" to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer("betas", to_torch(self.model.betas)) self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) self.register_buffer("alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer( "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), ) self.register_buffer( "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) ) self.register_buffer( "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) ) self.register_buffer( "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), ) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta, verbose=verbose, ) self.register_buffer("ddim_sigmas", ddim_sigmas) self.register_buffer("ddim_alphas", ddim_alphas) self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) ) self.register_buffer( "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps ) @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0.0, mask=None, org_mask=None, x0=None, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1.0, unconditional_conditioning=None, skip_steps=0, init_image=None, percentage_of_pixel_blending=0, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs, ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print( f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" ) self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f"Data shape for DDIM sampling is {size}, eta {eta}") samples, intermediates = self.ddim_sampling( conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, org_mask=org_mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, skip_steps=skip_steps, init_image=init_image, percentage_of_pixel_blending=percentage_of_pixel_blending, ) return samples, intermediates @torch.no_grad() def ddim_sampling( self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, org_mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, skip_steps=0, init_image=None, percentage_of_pixel_blending=0, ): device = self.model.betas.device b = shape[0] if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = ( int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 ) timesteps = self.ddim_timesteps[:subset_end] if skip_steps != 0: timesteps = timesteps[:-skip_steps] time_range = ( reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps) ) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") if init_image is not None: assert ( x0 is None and x_T is None ), "Try to infer x0 and x_t from init_image, but they already provided" encoder_posterior = self.model.encode_first_stage(init_image) x0 = self.model.get_first_stage_encoding(encoder_posterior) last_ts = torch.full((1,), time_range[0], device=device, dtype=torch.long) x_T = torch.cat([self.model.q_sample(x0, last_ts) for _ in range(b)]) img = x_T elif x_T is None: img = torch.randn(shape, device=device) else: img = x_T intermediates = {"x_inter": [img], "pred_x0": [img]} iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) cutoff_point = int(len(time_range) * (1 - percentage_of_pixel_blending)) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) # Latent-level blending if mask is not None and i < cutoff_point: n_masks = mask.shape[0] masks_interval = len(time_range) // n_masks + 1 curr_mask = mask[i // masks_interval].unsqueeze(0) # print(f"Using index {i // masks_interval}") img_orig = self.model.q_sample(x0, ts) img = img_orig * (1 - curr_mask) + curr_mask * img outs = self.p_sample_ddim( img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, ) img, pred_x0 = outs # Pixel-level blending if org_mask is not None and i >= cutoff_point: foreground_pixels = self.model.decode_first_stage(pred_x0) background_pixels = init_image pixel_blended = foreground_pixels * org_mask + background_pixels * (1 - org_mask) img_x0 = self.model.get_first_stage_encoding( self.model.encode_first_stage(pixel_blended) ) img = self.model.q_sample(img_x0, ts) if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates["x_inter"].append(img) intermediates["pred_x0"].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim( self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, ): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, c]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = ( self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev ) sqrt_one_minus_alphas = ( self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas ) sigmas = ( self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas ) # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.0: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0