File size: 15,773 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import gradio as gr
import spaces
import os
import numpy as np
import trimesh
import time
import traceback
import torch
from PIL import Image
import cv2
import shutil
from segment_anything import SamAutomaticMaskGenerator, build_sam
from omegaconf import OmegaConf

from modules.bbox_gen.models.autogressive_bbox_gen import BboxGen
from modules.part_synthesis.process_utils import save_parts_outputs
from modules.inference_utils import load_img_mask, prepare_bbox_gen_input, prepare_part_synthesis_input, gen_mesh_from_bounds, vis_voxel_coords, merge_parts
from modules.part_synthesis.pipelines import OmniPartImageTo3DPipeline
from modules.label_2d_mask.visualizer import Visualizer
from transformers import AutoModelForImageSegmentation

from modules.label_2d_mask.label_parts import (
    prepare_image, 
    get_sam_mask, 
    get_mask, 
    clean_segment_edges,
    resize_and_pad_to_square,
    size_th as DEFAULT_SIZE_TH
)

# Constants
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16
MAX_SEED = np.iinfo(np.int32).max
TMP_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_ROOT, exist_ok=True)

sam_mask_generator = None
rmbg_model = None
bbox_gen_model = None
part_synthesis_pipeline = None

size_th = DEFAULT_SIZE_TH


def prepare_models(sam_ckpt_path, partfield_ckpt_path, bbox_gen_ckpt_path):
    global sam_mask_generator, rmbg_model, bbox_gen_model, part_synthesis_pipeline
    if sam_mask_generator is None:
        print("Loading SAM model...")
        sam_model = build_sam(checkpoint=sam_ckpt_path).to(device=DEVICE)
        sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
    
    if rmbg_model is None:
        print("Loading BriaRMBG 2.0 model...")
        rmbg_model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
        rmbg_model.to(DEVICE)
        rmbg_model.eval()
    
    if part_synthesis_pipeline is None:
        print("Loading PartSynthesis model...")
        part_synthesis_pipeline = OmniPartImageTo3DPipeline.from_pretrained('omnipart/OmniPart')
        part_synthesis_pipeline.to(DEVICE)

    if bbox_gen_model is None:
        print("Loading BboxGen model...")
        bbox_gen_config = OmegaConf.load("configs/bbox_gen.yaml").model.args
        bbox_gen_config.partfield_encoder_path = partfield_ckpt_path
        bbox_gen_model = BboxGen(bbox_gen_config)
        bbox_gen_model.load_state_dict(torch.load(bbox_gen_ckpt_path), strict=False)
        bbox_gen_model.to(DEVICE)
        bbox_gen_model.eval().half()
    
    print("Models ready")


@spaces.GPU
def process_image(image_path, threshold, req: gr.Request):
    """Process image and generate initial segmentation"""
    global size_th

    user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    img_name = os.path.basename(image_path).split(".")[0]
    
    size_th = threshold
    
    img = Image.open(image_path).convert("RGB")
    processed_image = prepare_image(img, rmbg_net=rmbg_model.to(DEVICE))
        
    processed_image = resize_and_pad_to_square(processed_image)
    white_bg = Image.new("RGBA", processed_image.size, (255, 255, 255, 255))
    white_bg_img = Image.alpha_composite(white_bg, processed_image.convert("RGBA"))
    image = np.array(white_bg_img.convert('RGB'))
    
    rgba_path = os.path.join(user_dir, f"{img_name}_processed.png")
    processed_image.save(rgba_path)
    
    print("Generating raw SAM masks without post-processing...")
    raw_masks = sam_mask_generator.generate(image)
    
    raw_sam_vis = np.copy(image)
    raw_sam_vis = np.ones_like(image) * 255
    
    sorted_masks = sorted(raw_masks, key=lambda x: x["area"], reverse=True)
    
    for i, mask_data in enumerate(sorted_masks):
        if mask_data["area"] < size_th:
            continue
            
        color_r = (i * 50 + 80) % 256
        color_g = (i * 120 + 40) % 256
        color_b = (i * 180 + 20) % 256
        color = np.array([color_r, color_g, color_b])
        
        mask = mask_data["segmentation"]
        raw_sam_vis[mask] = color
    
    visual = Visualizer(image)
    
    group_ids, pre_merge_im = get_sam_mask(
        image, 
        sam_mask_generator, 
        visual, 
        merge_groups=None, 
        rgba_image=processed_image,
        img_name=img_name,
        save_dir=user_dir,
        size_threshold=size_th
    )
    
    pre_merge_path = os.path.join(user_dir, f"{img_name}_mask_pre_merge.png")
    Image.fromarray(pre_merge_im).save(pre_merge_path)
    pre_split_vis = np.ones_like(image) * 255  
    
    unique_ids = np.unique(group_ids)
    unique_ids = unique_ids[unique_ids >= 0]  
    
    for i, unique_id in enumerate(unique_ids):
        color_r = (i * 50 + 80) % 256
        color_g = (i * 120 + 40) % 256
        color_b = (i * 180 + 20) % 256
        color = np.array([color_r, color_g, color_b])
        
        mask = (group_ids == unique_id)
        pre_split_vis[mask] = color
        
        y_indices, x_indices = np.where(mask)
        if len(y_indices) > 0:
            center_y = int(np.mean(y_indices))
            center_x = int(np.mean(x_indices))
            cv2.putText(pre_split_vis, str(unique_id), 
                        (center_x, center_y), cv2.FONT_HERSHEY_SIMPLEX, 
                        0.5, (0, 0, 0), 1, cv2.LINE_AA)
    
    pre_split_path = os.path.join(user_dir, f"{img_name}_pre_split.png")
    Image.fromarray(pre_split_vis).save(pre_split_path)
    print(f"Pre-split segmentation (before disconnected parts handling) saved to {pre_split_path}")
    
    get_mask(group_ids, image, ids=2, img_name=img_name, save_dir=user_dir)
    
    init_seg_path = os.path.join(user_dir, f"{img_name}_mask_segments_2.png")
    
    seg_img = Image.open(init_seg_path)
    if seg_img.mode == 'RGBA':
        white_bg = Image.new('RGBA', seg_img.size, (255, 255, 255, 255))
        seg_img = Image.alpha_composite(white_bg, seg_img)
        seg_img.save(init_seg_path)
    
    state = {
        "image": image.tolist(),
        "processed_image": rgba_path,
        "group_ids": group_ids.tolist() if isinstance(group_ids, np.ndarray) else group_ids,
        "original_group_ids": group_ids.tolist() if isinstance(group_ids, np.ndarray) else group_ids,
        "img_name": img_name,
        "pre_split_path": pre_split_path, 
    }
    
    return init_seg_path, pre_merge_path, state


def apply_merge(merge_input, state, req: gr.Request):
    """Apply merge parameters and generate merged segmentation"""
    global sam_mask_generator
    
    if not state:
        return None, None, state

    user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
        
    # Convert back from list to numpy array
    image = np.array(state["image"])
    # Use original group IDs instead of the most recent ones
    group_ids = np.array(state["original_group_ids"])
    img_name = state["img_name"]
    
    # Load processed image from path
    processed_image = Image.open(state["processed_image"])
    
    # Display the original IDs before merging, SORTED for easier reading
    unique_ids = np.unique(group_ids)
    unique_ids = unique_ids[unique_ids >= 0]  # Exclude background
    print(f"Original segment IDs (used for merging): {sorted(unique_ids.tolist())}")
    
    # Parse merge groups
    merge_groups = None
    try:
        if merge_input:
            merge_groups = []
            group_sets = merge_input.split(';')
            for group_set in group_sets:
                ids = [int(x) for x in group_set.split(',')]
                if ids:
                    # Validate if these IDs exist in the segmentation
                    existing_ids = [id for id in ids if id in unique_ids]
                    missing_ids = [id for id in ids if id not in unique_ids]
                    
                    if missing_ids:
                        print(f"Warning: These IDs don't exist in the segmentation: {missing_ids}")
                    
                    # Only add group if it has valid IDs
                    if existing_ids:
                        merge_groups.append(ids)
                        print(f"Valid merge group: {ids} (missing: {missing_ids if missing_ids else 'none'})")
                    else:
                        print(f"Skipping merge group with no valid IDs: {ids}")
            
            print(f"Using merge groups: {merge_groups}")
    except Exception as e:
        print(f"Error parsing merge groups: {e}")
        return None, None, state
    
    # Initialize visualizer
    visual = Visualizer(image)
    
    # Generate merged segmentation starting from original IDs
    # Add skip_split=True to prevent splitting after merging
    new_group_ids, merged_im = get_sam_mask(
        image, 
        sam_mask_generator, 
        visual, 
        merge_groups=merge_groups, 
        existing_group_ids=group_ids,
        rgba_image=processed_image,
        skip_split=True, 
        img_name=img_name,
        save_dir=user_dir,
        size_threshold=size_th
    )
    
    # Display the new IDs after merging for future reference
    new_unique_ids = np.unique(new_group_ids)
    new_unique_ids = new_unique_ids[new_unique_ids >= 0]  # Exclude background
    print(f"New segment IDs (after merging): {new_unique_ids.tolist()}")
    
    # Clean edges
    new_group_ids = clean_segment_edges(new_group_ids)
    
    # Save merged segmentation visualization
    get_mask(new_group_ids, image, ids=3, img_name=img_name, save_dir=user_dir)
    
    # Path to merged segmentation
    merged_seg_path = os.path.join(user_dir, f"{img_name}_mask_segments_3.png")

    save_mask = new_group_ids + 1
    save_mask = save_mask.reshape(518, 518, 1).repeat(3, axis=-1)
    cv2.imwrite(os.path.join(user_dir, f"{img_name}_mask.exr"), save_mask.astype(np.float32))
    
    # Update state with the new group IDs but keep original IDs unchanged
    state["group_ids"] = new_group_ids.tolist() if isinstance(new_group_ids, np.ndarray) else new_group_ids
    state["save_mask_path"] = os.path.join(user_dir, f"{img_name}_mask.exr")
    
    return merged_seg_path, state


def explode_mesh(mesh, explosion_scale=0.4):    

    if isinstance(mesh, trimesh.Scene):
        scene = mesh
    elif isinstance(mesh, trimesh.Trimesh):
        print("Warning: Single mesh provided, can't create exploded view")
        scene = trimesh.Scene(mesh)
        return scene
    else:
        print(f"Warning: Unexpected mesh type: {type(mesh)}")
        scene = mesh

    if len(scene.geometry) <= 1:
        print("Only one geometry found - nothing to explode")
        return scene
    
    print(f"[EXPLODE_MESH] Starting mesh explosion with scale {explosion_scale}")
    print(f"[EXPLODE_MESH] Processing {len(scene.geometry)} parts")
    
    exploded_scene = trimesh.Scene()
    
    part_centers = []
    geometry_names = []
    
    for geometry_name, geometry in scene.geometry.items():
        if hasattr(geometry, 'vertices'):
            transform = scene.graph[geometry_name][0]
            vertices_global = trimesh.transformations.transform_points(
                geometry.vertices, transform)
            center = np.mean(vertices_global, axis=0)
            part_centers.append(center)
            geometry_names.append(geometry_name)
            print(f"[EXPLODE_MESH] Part {geometry_name}: center = {center}")
    
    if not part_centers:
        print("No valid geometries with vertices found")
        return scene
    
    part_centers = np.array(part_centers)
    global_center = np.mean(part_centers, axis=0)
    
    print(f"[EXPLODE_MESH] Global center: {global_center}")
    
    for i, (geometry_name, geometry) in enumerate(scene.geometry.items()):
        if hasattr(geometry, 'vertices'):
            if i < len(part_centers):
                part_center = part_centers[i]
                direction = part_center - global_center
                
                direction_norm = np.linalg.norm(direction)
                if direction_norm > 1e-6:
                    direction = direction / direction_norm
                else:
                    direction = np.random.randn(3)
                    direction = direction / np.linalg.norm(direction)
                
                offset = direction * explosion_scale
            else:
                offset = np.zeros(3)
            
            original_transform = scene.graph[geometry_name][0].copy()
            
            new_transform = original_transform.copy()
            new_transform[:3, 3] = new_transform[:3, 3] + offset
            
            exploded_scene.add_geometry(
                geometry, 
                transform=new_transform, 
                geom_name=geometry_name
            )
            
            print(f"[EXPLODE_MESH] Part {geometry_name}: moved by {np.linalg.norm(offset):.4f}")
    
    print("[EXPLODE_MESH] Mesh explosion complete")
    return exploded_scene
    
@spaces.GPU(duration=90)
def generate_parts(state, seed, cfg_strength, req: gr.Request):
    explode_factor=0.3
    img_path = state["processed_image"]
    mask_path = state["save_mask_path"]
    user_dir = os.path.join(TMP_ROOT, str(req.session_hash))
    img_white_bg, img_black_bg, ordered_mask_input, img_mask_vis = load_img_mask(img_path, mask_path)
    img_mask_vis.save(os.path.join(user_dir, "img_mask_vis.png"))

    voxel_coords = part_synthesis_pipeline.get_coords(img_black_bg, num_samples=1, seed=seed, sparse_structure_sampler_params={"steps": 25, "cfg_strength": 7.5})
    voxel_coords = voxel_coords.cpu().numpy()
    np.save(os.path.join(user_dir, "voxel_coords.npy"), voxel_coords)
    voxel_coords_ply = vis_voxel_coords(voxel_coords)
    voxel_coords_ply.export(os.path.join(user_dir, "voxel_coords_vis.ply"))
    print("[INFO] Voxel coordinates saved")

    bbox_gen_input = prepare_bbox_gen_input(os.path.join(user_dir, "voxel_coords.npy"), img_white_bg, ordered_mask_input)
    bbox_gen_output = bbox_gen_model.generate(bbox_gen_input)
    np.save(os.path.join(user_dir, "bboxes.npy"), bbox_gen_output['bboxes'][0])
    bboxes_vis = gen_mesh_from_bounds(bbox_gen_output['bboxes'][0])
    bboxes_vis.export(os.path.join(user_dir, "bboxes_vis.glb"))
    print("[INFO] BboxGen output saved")


    part_synthesis_input = prepare_part_synthesis_input(os.path.join(user_dir, "voxel_coords.npy"), os.path.join(user_dir, "bboxes.npy"), ordered_mask_input)

    torch.cuda.empty_cache()

    part_synthesis_output = part_synthesis_pipeline.get_slat(
        img_black_bg, 
        part_synthesis_input['coords'], 
        [part_synthesis_input['part_layouts']], 
        part_synthesis_input['masks'],
        seed=seed,
        slat_sampler_params={"steps": 25, "cfg_strength": cfg_strength},
        formats=['mesh', 'gaussian'],
        preprocess_image=False,
    )
    save_parts_outputs(
        part_synthesis_output, 
        output_dir=user_dir, 
        simplify_ratio=0.0, 
        save_video=False,
        save_glb=True,
        textured=False,
    )
    merge_parts(user_dir)
    print("[INFO] PartSynthesis output saved")

    bbox_mesh_path = os.path.join(user_dir, "bboxes_vis.glb")
    whole_mesh_path = os.path.join(user_dir, "mesh_segment.glb")

    combined_mesh = trimesh.load(whole_mesh_path)
    exploded_mesh_result = explode_mesh(combined_mesh, explosion_scale=explode_factor)
    exploded_mesh_result.export(os.path.join(user_dir, "exploded_parts.glb"))

    exploded_mesh_path = os.path.join(user_dir, "exploded_parts.glb")
    combined_gs_path = os.path.join(user_dir, "merged_gs.ply")
    exploded_gs_path = os.path.join(user_dir, "exploded_gs.ply")
    
    return bbox_mesh_path, whole_mesh_path, exploded_mesh_path, combined_gs_path, exploded_gs_path