File size: 38,443 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

"""Miscellaneous utility classes and functions."""
from collections import namedtuple
import time
import ctypes
import fnmatch
import importlib
import inspect
import numpy as np
import json
import os
import shutil
import sys
import types
import io
import pickle
import re
# import requests
import html
import hashlib
import glob
import tempfile
import urllib
import urllib.request
import uuid
import boto3
import threading
from contextlib import ContextDecorator
from contextlib import contextmanager, nullcontext

from distutils.util import strtobool
from typing import Any, List, Tuple, Union
import importlib
from loguru import logger
# import wandb
import torch
import psutil
import subprocess

import random
import string
import pdb

# Util classes
# ------------------------------------------------------------------------------------------


class EasyDict(dict):
    """Convenience class that behaves like a dict but allows access with the attribute syntax."""

    def __getattr__(self, name: str) -> Any:
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name: str, value: Any) -> None:
        self[name] = value

    def __delattr__(self, name: str) -> None:
        del self[name]


class Logger(object):
    """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""

    def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
        self.file = None

        if file_name is not None:
            self.file = open(file_name, file_mode)

        self.should_flush = should_flush
        self.stdout = sys.stdout
        self.stderr = sys.stderr

        sys.stdout = self
        sys.stderr = self

    def __enter__(self) -> "Logger":
        return self

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        self.close()

    def write(self, text: Union[str, bytes]) -> None:
        """Write text to stdout (and a file) and optionally flush."""
        if isinstance(text, bytes):
            text = text.decode()
        if len(text) == 0:  # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
            return

        if self.file is not None:
            self.file.write(text)

        self.stdout.write(text)

        if self.should_flush:
            self.flush()

    def flush(self) -> None:
        """Flush written text to both stdout and a file, if open."""
        if self.file is not None:
            self.file.flush()

        self.stdout.flush()

    def close(self) -> None:
        """Flush, close possible files, and remove stdout/stderr mirroring."""
        self.flush()

        # if using multiple loggers, prevent closing in wrong order
        if sys.stdout is self:
            sys.stdout = self.stdout
        if sys.stderr is self:
            sys.stderr = self.stderr

        if self.file is not None:
            self.file.close()
            self.file = None


# Cache directories
# ------------------------------------------------------------------------------------------

_dnnlib_cache_dir = None


def set_cache_dir(path: str) -> None:
    global _dnnlib_cache_dir
    _dnnlib_cache_dir = path


def make_cache_dir_path(*paths: str) -> str:
    if _dnnlib_cache_dir is not None:
        return os.path.join(_dnnlib_cache_dir, *paths)
    if 'DNNLIB_CACHE_DIR' in os.environ:
        return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
    if 'HOME' in os.environ:
        return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
    if 'USERPROFILE' in os.environ:
        return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
    return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)


# Small util functions
# ------------------------------------------------------------------------------------------


def format_time(seconds: Union[int, float]) -> str:
    """Convert the seconds to human readable string with days, hours, minutes and seconds."""
    s = int(np.rint(seconds))

    if s < 60:
        return "{0}s".format(s)
    elif s < 60 * 60:
        return "{0}m {1:02}s".format(s // 60, s % 60)
    elif s < 24 * 60 * 60:
        return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
    else:
        return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)


def format_time_brief(seconds: Union[int, float]) -> str:
    """Convert the seconds to human readable string with days, hours, minutes and seconds."""
    s = int(np.rint(seconds))

    if s < 60:
        return "{0}s".format(s)
    elif s < 60 * 60:
        return "{0}m {1:02}s".format(s // 60, s % 60)
    elif s < 24 * 60 * 60:
        return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60)
    else:
        return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24)


def ask_yes_no(question: str) -> bool:
    """Ask the user the question until the user inputs a valid answer."""
    while True:
        try:
            print("{0} [y/n]".format(question))
            return strtobool(input().lower())
        except ValueError:
            pass


def tuple_product(t: Tuple) -> Any:
    """Calculate the product of the tuple elements."""
    result = 1

    for v in t:
        result *= v

    return result


_str_to_ctype = {
    "uint8": ctypes.c_ubyte,
    "uint16": ctypes.c_uint16,
    "uint32": ctypes.c_uint32,
    "uint64": ctypes.c_uint64,
    "int8": ctypes.c_byte,
    "int16": ctypes.c_int16,
    "int32": ctypes.c_int32,
    "int64": ctypes.c_int64,
    "float32": ctypes.c_float,
    "float64": ctypes.c_double
}


def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
    """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
    type_str = None

    if isinstance(type_obj, str):
        type_str = type_obj
    elif hasattr(type_obj, "__name__"):
        type_str = type_obj.__name__
    elif hasattr(type_obj, "name"):
        type_str = type_obj.name
    else:
        raise RuntimeError("Cannot infer type name from input")

    assert type_str in _str_to_ctype.keys()

    my_dtype = np.dtype(type_str)
    my_ctype = _str_to_ctype[type_str]

    assert my_dtype.itemsize == ctypes.sizeof(my_ctype)

    return my_dtype, my_ctype


def is_pickleable(obj: Any) -> bool:
    try:
        with io.BytesIO() as stream:
            pickle.dump(obj, stream)
        return True
    except:
        return False


# Functionality to import modules/objects by name, and call functions by name
# ------------------------------------------------------------------------------------------

def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
    """Searches for the underlying module behind the name to some python object.
    Returns the module and the object name (original name with module part removed)."""

    # allow convenience shorthands, substitute them by full names
    obj_name = re.sub("^np.", "numpy.", obj_name)
    obj_name = re.sub("^tf.", "tensorflow.", obj_name)

    # list alternatives for (module_name, local_obj_name)
    parts = obj_name.split(".")
    name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]

    # try each alternative in turn
    for module_name, local_obj_name in name_pairs:
        try:
            module = importlib.import_module(module_name)  # may raise ImportError
            get_obj_from_module(module, local_obj_name)  # may raise AttributeError
            return module, local_obj_name
        except:
            pass

    # maybe some of the modules themselves contain errors?
    for module_name, _local_obj_name in name_pairs:
        try:
            importlib.import_module(module_name)  # may raise ImportError
        except ImportError:
            if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
                raise

    # maybe the requested attribute is missing?
    for module_name, local_obj_name in name_pairs:
        try:
            module = importlib.import_module(module_name)  # may raise ImportError
            get_obj_from_module(module, local_obj_name)  # may raise AttributeError
        except ImportError:
            pass

    # we are out of luck, but we have no idea why
    raise ImportError(obj_name)


def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
    """Traverses the object name and returns the last (rightmost) python object."""
    if obj_name == '':
        return module
    obj = module
    for part in obj_name.split("."):
        obj = getattr(obj, part)
    return obj


def get_obj_by_name(name: str) -> Any:
    """Finds the python object with the given name."""
    module, obj_name = get_module_from_obj_name(name)
    return get_obj_from_module(module, obj_name)


def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
    """Finds the python object with the given name and calls it as a function."""
    assert func_name is not None
    func_obj = get_obj_by_name(func_name)
    assert callable(func_obj)
    return func_obj(*args, **kwargs)


def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
    """Finds the python class with the given name and constructs it with the given arguments."""
    return call_func_by_name(*args, func_name=class_name, **kwargs)


def get_module_dir_by_obj_name(obj_name: str) -> str:
    """Get the directory path of the module containing the given object name."""
    module, _ = get_module_from_obj_name(obj_name)
    return os.path.dirname(inspect.getfile(module))


def is_top_level_function(obj: Any) -> bool:
    """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
    return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__


def get_top_level_function_name(obj: Any) -> str:
    """Return the fully-qualified name of a top-level function."""
    assert is_top_level_function(obj)
    module = obj.__module__
    if module == '__main__':
        module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
    return module + "." + obj.__name__


# File system helpers
# ------------------------------------------------------------------------------------------

def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
    """List all files recursively in a given directory while ignoring given file and directory names.
    Returns list of tuples containing both absolute and relative paths."""
    assert os.path.isdir(dir_path)
    base_name = os.path.basename(os.path.normpath(dir_path))

    if ignores is None:
        ignores = []

    result = []

    for root, dirs, files in os.walk(dir_path, topdown=True):
        for ignore_ in ignores:
            dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]

            # dirs need to be edited in-place
            for d in dirs_to_remove:
                dirs.remove(d)

            files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]

        absolute_paths = [os.path.join(root, f) for f in files]
        relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]

        if add_base_to_relative:
            relative_paths = [os.path.join(base_name, p) for p in relative_paths]

        assert len(absolute_paths) == len(relative_paths)
        result += zip(absolute_paths, relative_paths)

    return result


def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
    """Takes in a list of tuples of (src, dst) paths and copies files.
    Will create all necessary directories."""
    for file in files:
        target_dir_name = os.path.dirname(file[1])

        # will create all intermediate-level directories
        if not os.path.exists(target_dir_name):
            os.makedirs(target_dir_name)

        shutil.copyfile(file[0], file[1])


# URL helpers
# ------------------------------------------------------------------------------------------

def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
    """Determine whether the given object is a valid URL string."""
    if not isinstance(obj, str) or not "://" in obj:
        return False
    if allow_file_urls and obj.startswith('file://'):
        return True
    try:
        res = requests.compat.urlparse(obj)
        if not res.scheme or not res.netloc or not "." in res.netloc:
            return False
        res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
        if not res.scheme or not res.netloc or not "." in res.netloc:
            return False
    except:
        return False
    return True


def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
    """Download the given URL and return a binary-mode file object to access the data."""
    assert num_attempts >= 1
    assert not (return_filename and (not cache))

    # Doesn't look like an URL scheme so interpret it as a local filename.
    if not re.match('^[a-z]+://', url):
        return url if return_filename else open(url, "rb")

    # Handle file URLs.  This code handles unusual file:// patterns that
    # arise on Windows:
    #
    # file:///c:/foo.txt
    #
    # which would translate to a local '/c:/foo.txt' filename that's
    # invalid.  Drop the forward slash for such pathnames.
    #
    # If you touch this code path, you should test it on both Linux and
    # Windows.
    #
    # Some internet resources suggest using urllib.request.url2pathname() but
    # but that converts forward slashes to backslashes and this causes
    # its own set of problems.
    if url.startswith('file://'):
        filename = urllib.parse.urlparse(url).path
        if re.match(r'^/[a-zA-Z]:', filename):
            filename = filename[1:]
        return filename if return_filename else open(filename, "rb")

    assert is_url(url)

    # Lookup from cache.
    if cache_dir is None:
        cache_dir = make_cache_dir_path('downloads')

    url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
    if cache:
        cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
        if len(cache_files) == 1:
            filename = cache_files[0]
            return filename if return_filename else open(filename, "rb")

    # Download.
    url_name = None
    url_data = None
    with requests.Session() as session:
        if verbose:
            print("Downloading %s ..." % url, end="", flush=True)
        for attempts_left in reversed(range(num_attempts)):
            try:
                with session.get(url) as res:
                    res.raise_for_status()
                    if len(res.content) == 0:
                        raise IOError("No data received")

                    if len(res.content) < 8192:
                        content_str = res.content.decode("utf-8")
                        if "download_warning" in res.headers.get("Set-Cookie", ""):
                            links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
                            if len(links) == 1:
                                url = requests.compat.urljoin(url, links[0])
                                raise IOError("Google Drive virus checker nag")
                        if "Google Drive - Quota exceeded" in content_str:
                            raise IOError("Google Drive download quota exceeded -- please try again later")

                    match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
                    url_name = match[1] if match else url
                    url_data = res.content
                    if verbose:
                        print(" done")
                    break
            except KeyboardInterrupt:
                raise
            except:
                if not attempts_left:
                    if verbose:
                        print(" failed")
                    raise
                if verbose:
                    print(".", end="", flush=True)

    # Save to cache.
    if cache:
        safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
        cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
        temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
        os.makedirs(cache_dir, exist_ok=True)
        with open(temp_file, "wb") as f:
            f.write(url_data)
        os.replace(temp_file, cache_file)  # atomic
        if return_filename:
            return cache_file

    # Return data as file object.
    assert not return_filename
    return io.BytesIO(url_data)

# ------------------------------------------------------------------------------------------
# util function modified from https://github.com/nv-tlabs/LION/blob/0467d2199076e95a7e88bafd99dcd7d48a04b4a7/utils/model_helper.py
def import_class(model_str):
    from torch_utils.dist_utils import is_rank0
    if is_rank0():
        logger.info('import: {}', model_str)
    p, m = model_str.rsplit('.', 1)
    mod = importlib.import_module(p)
    Model = getattr(mod, m)
    return Model

class ScopedTorchProfiler(ContextDecorator):
    """
    Marks ranges for both nvtx profiling (with nsys) and torch autograd profiler
    """
    __global_counts = {}
    enabled=False

    def __init__(self, unique_name: str):
        """
        Names must be unique!
        """
        ScopedTorchProfiler.__global_counts[unique_name] = 0
        self._name = unique_name
        self._autograd_scope = torch.profiler.record_function(unique_name)
    
    def __enter__(self):
        if ScopedTorchProfiler.enabled:
            torch.cuda.nvtx.range_push(self._name)
        self._autograd_scope.__enter__()

    def __exit__(self, exc_type, exc_value, traceback):
        self._autograd_scope.__exit__(exc_type, exc_value, traceback)
        if ScopedTorchProfiler.enabled:
            torch.cuda.nvtx.range_pop()

class TimingsMonitor():
    CUDATimer = namedtuple('CUDATimer', ['start', 'end'])
    def __init__(self, device, enabled=True, timing_names:List[str]=[], cuda_timing_names:List[str]=[]):
        """
        Usage:
            tmonitor = TimingsMonitor(device)
            for i in range(n_iter):
                # Record arbitrary scopes
                with tmonitor.timing_scope('regular_scope_name'):
                    ...
                    with tmonitor.cuda_timing_scope('nested_scope_name'):
                        ...
                with tmonitor.cuda_timing_scope('cuda_scope_name'):
                    ...
                tmonitor.record_timing('duration_name', end_time - start_time)

                # Gather timings
                tmonitor.record_all_cuda_timings()
                tmonitor.update_all_averages()
                averages = tmonitor.get_average_timings()
                all_timings = tmonitor.get_timings()

        Two types of timers, standard report timing and cuda timings.
        Cuda timing supports scoped context manager cuda_event_scope.
        Args:
            device: device to time on (needed for cuda timers)
            # enabled: HACK to only report timings from rank 0, set enabled=(global_rank==0)
            timing_names: timings to report optional (will auto add new names)
            cuda_timing_names: cuda periods to time optional (will auto add new names)
        """
        self.enabled=enabled
        self.device = device

        # Normal timing
        # self.all_timings_dict = {k:None for k in timing_names + cuda_timing_names}
        self.all_timings_dict = {}
        self.avg_meter_dict = {}

        # Cuda event timers to measure time spent on pushing data to gpu and on training step
        self.cuda_event_timers = {}

        for k in timing_names:
            self.add_new_timing(k)

        for k in cuda_timing_names:
            self.add_new_cuda_timing(k)

        # Running averages
        # self.avg_meter_dict = {k:AverageMeter() for k in self.all_timings_dict}
    
    def add_new_timing(self, name):
        self.avg_meter_dict[name] = AverageMeter()
        self.all_timings_dict[name] = None
    
    def add_new_cuda_timing(self, name):
        start_event = torch.cuda.Event(enable_timing=True)
        end_event = torch.cuda.Event(enable_timing=True)
        self.cuda_event_timers[name] = self.CUDATimer(start=start_event, end=end_event)
        self.add_new_timing(name)
    
    def clear_timings(self):
        self.all_timings_dict = {k:None for k in self.all_timings_dict}

    def get_timings(self):
        return self.all_timings_dict

    def get_average_timings(self):
        return {k:v.avg for k,v in self.avg_meter_dict.items()}

    def update_all_averages(self):
        """
        Once per iter, when timings have been finished recording, one should
        call update_average_iter to keep running average of timings.
        """
        for k,v in self.all_timings_dict.items():
            if v is None:
                print("none_timing", k)
                continue
            self.avg_meter_dict[k].update(v)
    
    def record_timing(self, name, value):
        if name not in self.all_timings_dict: self.add_new_timing(name)
        # assert name in self.all_timings_dict
        self.all_timings_dict[name] = value

    def _record_cuda_event_start(self, name):
        if name in self.cuda_event_timers:
            self.cuda_event_timers[name].start.record(
                torch.cuda.current_stream(self.device))

    def _record_cuda_event_end(self, name):
        if name in self.cuda_event_timers:
            self.cuda_event_timers[name].end.record(
                torch.cuda.current_stream(self.device))

    @contextmanager
    def cuda_timing_scope(self, name, profile=True):
        if name not in self.all_timings_dict: self.add_new_cuda_timing(name)
        with ScopedTorchProfiler(name) if profile else nullcontext():
            self._record_cuda_event_start(name)
            try:
                yield
            finally:
                self._record_cuda_event_end(name)

    @contextmanager
    def timing_scope(self, name, profile=True):
        if name not in self.all_timings_dict: self.add_new_timing(name)
        with ScopedTorchProfiler(name) if profile else nullcontext():
            start_time = time.time()
            try:
                yield
            finally:
                self.record_timing(name, time.time()-start_time)
    
    def record_all_cuda_timings(self):
        """ After all the cuda events call this to synchronize and record down the cuda timings. """
        for k, events in self.cuda_event_timers.items():
            with torch.no_grad():
                events.end.synchronize()
                # Convert to seconds
                time_elapsed = events.start.elapsed_time(events.end)/1000.
                self.all_timings_dict[k] = time_elapsed

def init_s3(config_file):
    config = json.load(open(config_file, 'r'))
    s3_client = boto3.client("s3", **config)
    return s3_client

def download_from_s3(file_path, target_path, cfg):
    tic = time.time()
    s3_client = init_s3(cfg.checkpoint.write_s3_config)  # use to test the s3_client can be init
    bucket_name = file_path.split('/')[2]
    file_key = file_path.split(bucket_name+'/')[-1]
    print(bucket_name, file_key)
    s3_client.download_file(bucket_name, file_key, target_path)
    logger.info(f'finish download from ! s3://{bucket_name}/{file_key} to {target_path} %.1f sec'%(
        time.time() - tic))

def upload_to_s3(buffer, bucket_name, key, config_dict):
    logger.info(f'start upload_to_s3! bucket_name={bucket_name}, key={key}')
    tic = time.time()
    s3 = boto3.client('s3', **config_dict)
    s3.put_object(Bucket=bucket_name, Key=key, Body=buffer.getvalue())
    logger.info(f'finish upload_to_s3! s3://{bucket_name}/{key} %.1f sec'%(time.time() - tic))

def write_ckpt_to_s3(cfg, all_model_dict, ckpt_name):
    buffer = io.BytesIO()
    tic = time.time()
    torch.save(all_model_dict, buffer)  # take ~0.25 sec
    # logger.info('write ckpt to buffer: %.2f sec'%(time.time() - tic))
    group, name = cfg.outdir.rstrip("/").split("/")[-2:]
    key = f"checkpoints/{group}/{name}/ckpt/{ckpt_name}"
    bucket_name = cfg.checkpoint.write_s3_bucket
     
    s3_client = init_s3(cfg.checkpoint.write_s3_config)  # use to test the s3_client can be init

    config_dict = json.load(open(cfg.checkpoint.write_s3_config, 'r'))
    upload_thread = threading.Thread(target=upload_to_s3, args=(buffer, bucket_name, key, config_dict))
    upload_thread.start()
    path = f"s3://{bucket_name}/{key}" 
    return path

def upload_file_to_s3(cfg, file_path, key_name=None):
    # file_path is the local file path, can be a yaml file
    # this function is used to upload the ckecpoint only
    tic = time.time()
    group, name = cfg.outdir.rstrip("/").split("/")[-2:]
    if key_name is None:
        key = os.path.basename(file_path)
    key = f"checkpoints/{group}/{name}/{key}"
    bucket_name = cfg.checkpoint.write_s3_bucket
    s3_client = init_s3(cfg.checkpoint.write_s3_config)
    # Upload the file
    with open(file_path, 'rb') as f:
        s3_client.upload_fileobj(f, bucket_name, key)
    full_s3_path = f"s3://{bucket_name}/{key}"
    logger.info(f'upload_to_s3: {file_path} {full_s3_path} | use time: {time.time()-tic}')

    return full_s3_path


def load_from_s3(file_path, cfg, load_fn):
    """
        ckpt_path example:
            s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt
    """
    s3_client = init_s3(cfg.checkpoint.write_s3_config)  # use to test the s3_client can be init
    bucket_name = file_path.split("s3://")[-1].split('/')[0]
    key = file_path.split(f'{bucket_name}/')[-1]
    # logger.info(f"-> try to load s3://{bucket_name}/{key} ")
    tic = time.time()
    for attemp in range(10):
        try:
            # Download the state dict from S3 into memory (as a binary stream)
            with io.BytesIO() as buffer:
                s3_client.download_fileobj(bucket_name, key, buffer)
                buffer.seek(0)

                # Load the state dict into a PyTorch model
                # out = torch.load(buffer, map_location=torch.device("cpu"))
                out = load_fn(buffer)
            break
        except:
            logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}")
    from torch_utils.dist_utils import is_rank0
    if is_rank0():
        logger.info(f'loaded {file_path} | use time: {time.time()-tic:.1f} sec')
    return out

def load_torch_dict_from_s3(ckpt_path, cfg):
    """
        ckpt_path example:
            s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt
    """
    s3_client = init_s3(cfg.checkpoint.write_s3_config)  # use to test the s3_client can be init
    bucket_name = ckpt_path.split("s3://")[-1].split('/')[0]
    key = ckpt_path.split(f'{bucket_name}/')[-1]
    for attemp in range(10):
        try:
            # Download the state dict from S3 into memory (as a binary stream)
            with io.BytesIO() as buffer:
                s3_client.download_fileobj(bucket_name, key, buffer)
                buffer.seek(0)

                # Load the state dict into a PyTorch model
                out = torch.load(buffer, map_location=torch.device("cpu"))
            break
        except:
            logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}")
    return out

def count_parameters_in_M(model):
    return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6

def printarr(*arrs, float_width=6, **kwargs):
    """
    Print a pretty table giving name, shape, dtype, type, and content information for input tensors or scalars.

    Call like: printarr(my_arr, some_other_arr, maybe_a_scalar). Accepts a variable number of arguments.

    Inputs can be:
        - Numpy tensor arrays
        - Pytorch tensor arrays
        - Jax tensor arrays
        - Python ints / floats
        - None

    It may also work with other array-like types, but they have not been tested.

    Use the `float_width` option specify the precision to which floating point types are printed.

    Author: Nicholas Sharp (nmwsharp.com)
    Canonical source: https://gist.github.com/nmwsharp/54d04af87872a4988809f128e1a1d233
    License: This snippet may be used under an MIT license, and it is also released into the public domain. 
             Please retain this docstring as a reference.
    """
    
    frame = inspect.currentframe().f_back
    default_name = "[temporary]"

    ## helpers to gather data about each array
    def name_from_outer_scope(a):
        if a is None:
            return '[None]'
        name = default_name
        for k, v in frame.f_locals.items():
            if v is a:
                name = k
                break
        return name

    def type_strip(type_str):
        return type_str.lstrip('<class ').rstrip('>').replace('torch.', '').strip("'")

    def dtype_str(a):
        if a is None:
            return 'None'
        if isinstance(a, int):
            return 'int'
        if isinstance(a, float):
            return 'float'
        if isinstance(a, list) and len(a)>0:
            return type_strip(str(type(a[0])))
        if hasattr(a, 'dtype'):
            return type_strip(str(a.dtype))
        else:
            return ''
    def shape_str(a):
        if a is None:
            return 'N/A'
        if isinstance(a, int):
            return 'scalar'
        if isinstance(a, float):
            return 'scalar'
        if isinstance(a, list):
            return f"[{shape_str(a[0]) if len(a)>0 else '?'}]*{len(a)}"
        if hasattr(a, 'shape'):
            return str(tuple(a.shape))
        else:
            return ''
    def type_str(a):
        return type_strip(str(type(a))) # TODO this is is weird... what's the better way?
    def device_str(a):
        if hasattr(a, 'device'):
            device_str = str(a.device)
            if len(device_str) < 10:
                # heuristic: jax returns some goofy long string we don't want, ignore it
                return device_str
        return ""
    def format_float(x):
        return f"{x:{float_width}g}"
    def minmaxmean_str(a):
        if a is None:
            return ('N/A', 'N/A', 'N/A', 'N/A')
        if isinstance(a, int) or isinstance(a, float): 
            return (format_float(a),)*4

        # compute min/max/mean. if anything goes wrong, just print 'N/A'
        min_str = "N/A"
        try: min_str = format_float(a.min())
        except: pass
        max_str = "N/A"
        try: max_str = format_float(a.max())
        except: pass
        mean_str = "N/A"
        try: mean_str = format_float(a.mean())
        except: pass
        try: median_str = format_float(a.median())
        except:
            try: median_str = format_float(np.median(np.array(a)))
            except: median_str = 'N/A'
        return (min_str, max_str, mean_str, median_str)

    def get_prop_dict(a,k=None):
        minmaxmean = minmaxmean_str(a)
        props = {
            'name' : name_from_outer_scope(a) if k is None else k,
            # 'type' : str(type(a)).replace('torch.',''),
            'dtype' : dtype_str(a),
            'shape' : shape_str(a),
            'type' : type_str(a),
            'device' : device_str(a),
            'min' : minmaxmean[0],
            'max' : minmaxmean[1],
            'mean' : minmaxmean[2],
            'median': minmaxmean[3]
        }
        return props

    try:

        props = ['name', 'type', 'dtype', 'shape', 'device', 'min', 'max', 'mean', 'median']

        # precompute all of the properties for each input
        str_props = []
        for a in arrs:
            str_props.append(get_prop_dict(a))
        for k,a in kwargs.items():
            str_props.append(get_prop_dict(a, k=k))

        # for each property, compute its length
        maxlen = {}
        for p in props: maxlen[p] = 0
        for sp in str_props:
            for p in props:
                maxlen[p] = max(maxlen[p], len(sp[p]))

        # if any property got all empty strings, don't bother printing it, remove if from the list
        props = [p for p in props if maxlen[p] > 0]

        # print a header
        header_str = ""
        for p in props:
            prefix =  "" if p == 'name' else " | "
            fmt_key = ">" if p == 'name' else "<"
            header_str += f"{prefix}{p:{fmt_key}{maxlen[p]}}"
        print(header_str)
        print("-"*len(header_str))
            
        # now print the acual arrays
        for strp in str_props:
            for p in props:
                prefix =  "" if p == 'name' else " | "
                fmt_key = ">" if p == 'name' else "<"
                print(f"{prefix}{strp[p]:{fmt_key}{maxlen[p]}}", end='')
            print("")

    finally:
        del frame

def debug_print_all_tensor_sizes(min_tot_size = 0):
    import gc
    print("---------------------------------------"*3)
    for obj in gc.get_objects():
        try:
            if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
                if np.prod(obj.size())>=min_tot_size:
                    print(type(obj), obj.size())
        except:
            pass
def print_cpu_usage():
    
    # Get current CPU usage as a percentage
    cpu_usage = psutil.cpu_percent()
    
    # Get current memory usage
    memory_usage = psutil.virtual_memory().used
    
    # Convert memory usage to a human-readable format
    memory_usage_str = psutil._common.bytes2human(memory_usage)
    
    # Print CPU and memory usage
    msg = f"Current CPU usage: {cpu_usage}% | "
    msg += f"Current memory usage: {memory_usage_str}"
    return msg

def calmsize(num_bytes):
    if math.isnan(num_bytes):
        return ''
    for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
        if abs(num_bytes) < 1024.0:
            return "{:.1f}{}B".format(num_bytes, unit)
        num_bytes /= 1024.0
    return "{:.1f}{}B".format(num_bytes, 'Y')

def readable_size(num_bytes: int) -> str: 
    return calmsize(num_bytes) ## '' if math.isnan(num_bytes) else '{:.1f}'.format(calmsize(num_bytes))

def get_gpu_memory():
    """
    Get the current GPU memory usage for each device as a dictionary
    """
    output = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.used", "--format=csv"])
    output = output.decode("utf-8")
    gpu_memory_values = output.split("\n")[1:-1]
    gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values]
    gpu_memory = dict(zip(range(len(gpu_memory_values)), gpu_memory_values))
    return gpu_memory

def get_gpu_util():
    """
    Get the current GPU memory usage for each device as a dictionary
    """
    output = subprocess.check_output(["nvidia-smi", "--query-gpu=utilization.gpu", "--format=csv"])
    output = output.decode("utf-8")
    gpu_memory_values = output.split("\n")[1:-1]
    gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values]
    gpu_util = dict(zip(range(len(gpu_memory_values)), gpu_memory_values))
    return gpu_util


def print_gpu_usage():
    useage = get_gpu_memory()
    msg = f" | GPU usage: "
    for k, v in useage.items():
        msg += f"{k}: {v} MB "
    # utilization = get_gpu_util()
    # msg + ' | util '
    # for k, v in utilization.items():
    #     msg += f"{k}: {v} % "
    return msg

class AverageMeter(object):

    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt


def generate_random_string(length):
    # This script will generate a string of 10 random ASCII letters (both lowercase and uppercase).
    # You can adjust the length parameter to fit your needs.
    letters = string.ascii_letters
    return ''.join(random.choice(letters) for _ in range(length))


class ForkedPdb(pdb.Pdb):
    """
    PDB Subclass for debugging multi-processed code
    Suggested in: https://stackoverflow.com/questions/4716533/how-to-attach-debugger-to-a-python-subproccess
    """
    def interaction(self, *args, **kwargs):
        _stdin = sys.stdin
        try:
            sys.stdin = open('/dev/stdin')
            pdb.Pdb.interaction(self, *args, **kwargs)
        finally:
            sys.stdin = _stdin

def check_exist_in_s3(file_path, s3_config):
    s3 = init_s3(s3_config)
    bucket_name, object_name = s3path_to_bucket_key(file_path)

    try:
        s3.head_object(Bucket=bucket_name, Key=object_name)
        return 1
    except:
        logger.info(f'file not found: s3://{bucket_name}/{object_name}')
        return 0

def s3path_to_bucket_key(file_path):
    bucket_name = file_path.split('/')[2]
    object_name = file_path.split(bucket_name + '/')[-1]
    return bucket_name, object_name

def copy_file_to_s3(cfg, file_path_local, file_path_s3):
    # work similar as upload_file_to_s3, but not trying to parse the file path
    # file_path_s3: s3://{bucket}/{key}
    bucket_name, key = s3path_to_bucket_key(file_path_s3)
    tic = time.time()
    s3_client = init_s3(cfg.checkpoint.write_s3_config)

    # Upload the file
    with open(file_path_local, 'rb') as f:
        s3_client.upload_fileobj(f, bucket_name, key)
    full_s3_path = f"s3://{bucket_name}/{key}"
    logger.info(f'copy file: {file_path_local} {full_s3_path} | use time: {time.time()-tic}')
    return full_s3_path