File size: 13,833 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#https://github.com/3DTopia/OpenLRM/blob/main/openlrm/models/modeling_lrm.py
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
from functools import partial

def project_onto_planes(planes, coordinates):
    """
    Does a projection of a 3D point onto a batch of 2D planes,
    returning 2D plane coordinates.

    Takes plane axes of shape n_planes, 3, 3
    # Takes coordinates of shape N, M, 3
    # returns projections of shape N*n_planes, M, 2
    """
    N, M, C = coordinates.shape
    n_planes, _, _ = planes.shape
    coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
    inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
    projections = torch.bmm(coordinates, inv_planes)
    return projections[..., :2]

def sample_from_planes(plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
    plane_axes = torch.tensor([[[1, 0, 0],
                                [0, 1, 0],
                                [0, 0, 1]],
                                [[1, 0, 0],
                                [0, 0, 1],
                                [0, 1, 0]],
                                [[0, 0, 1],
                                [0, 1, 0],
                                [1, 0, 0]]], dtype=torch.float32).cuda()
    
    assert padding_mode == 'zeros'
    N, n_planes, C, H, W = plane_features.shape
    _, M, _ = coordinates.shape
    plane_features = plane_features.view(N*n_planes, C, H, W)

    projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)
    output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
    return output_features

def get_grid_coord(grid_size = 256, align_corners=False):
    if align_corners == False:
        coords = torch.linspace(-1 + 1/(grid_size), 1 - 1/(grid_size), steps=grid_size)
    else:
        coords = torch.linspace(-1, 1, steps=grid_size)
    i, j, k = torch.meshgrid(coords, coords, coords, indexing='ij')
    coordinates = torch.stack((i, j, k), dim=-1).reshape(-1, 3)
    return coordinates

class BasicBlock(nn.Module):
    """
    Transformer block that is in its simplest form.
    Designed for PF-LRM architecture.
    """
    # Block contains a self-attention layer and an MLP
    def __init__(self, inner_dim: int, num_heads: int, eps: float,
                 attn_drop: float = 0., attn_bias: bool = False,
                 mlp_ratio: float = 4., mlp_drop: float = 0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
        self.self_attn = nn.MultiheadAttention(
            embed_dim=inner_dim, num_heads=num_heads,
            dropout=attn_drop, bias=attn_bias, batch_first=True)
        self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
        self.mlp = nn.Sequential(
            nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
            nn.GELU(),
            nn.Dropout(mlp_drop),
            nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
            nn.Dropout(mlp_drop),
        )

    def forward(self, x):
        # x: [N, L, D]
        before_sa = self.norm1(x)
        x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
        x = x + self.mlp(self.norm2(x))
        return x
        
class ConditionBlock(nn.Module):
    """
    Transformer block that takes in a cross-attention condition.
    Designed for SparseLRM architecture.
    """
    # Block contains a cross-attention layer, a self-attention layer, and an MLP
    def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float,
                 attn_drop: float = 0., attn_bias: bool = False,
                 mlp_ratio: float = 4., mlp_drop: float = 0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
        self.cross_attn = nn.MultiheadAttention(
            embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
            dropout=attn_drop, bias=attn_bias, batch_first=True)
        self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
        self.self_attn = nn.MultiheadAttention(
            embed_dim=inner_dim, num_heads=num_heads,
            dropout=attn_drop, bias=attn_bias, batch_first=True)
        self.norm3 = nn.LayerNorm(inner_dim, eps=eps)
        self.mlp = nn.Sequential(
            nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
            nn.GELU(),
            nn.Dropout(mlp_drop),
            nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
            nn.Dropout(mlp_drop),
        )

    def forward(self, x, cond):
        # x: [N, L, D]
        # cond: [N, L_cond, D_cond]
        x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0]
        before_sa = self.norm2(x)
        x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
        x = x + self.mlp(self.norm3(x))
        return x

class TransformerDecoder(nn.Module):
    def __init__(self, block_type: str,
                 num_layers: int, num_heads: int,
                 inner_dim: int, cond_dim: int = None,
                 eps: float = 1e-6):
        super().__init__()
        self.block_type = block_type
        self.layers = nn.ModuleList([
            self._block_fn(inner_dim, cond_dim)(
                num_heads=num_heads,
                eps=eps,
            )
            for _ in range(num_layers)
        ])
        self.norm = nn.LayerNorm(inner_dim, eps=eps)

    @property
    def block_type(self):
        return self._block_type

    @block_type.setter
    def block_type(self, block_type):
        assert block_type in ['cond', 'basic'], \
            f"Unsupported block type: {block_type}"
        self._block_type = block_type

    def _block_fn(self, inner_dim, cond_dim):
        assert inner_dim is not None, f"inner_dim must always be specified"
        if self.block_type == 'basic':
            return partial(BasicBlock, inner_dim=inner_dim)
        elif self.block_type == 'cond':
            assert cond_dim is not None, f"Condition dimension must be specified for ConditionBlock"
            return partial(ConditionBlock, inner_dim=inner_dim, cond_dim=cond_dim)
        else:
            raise ValueError(f"Unsupported block type during runtime: {self.block_type}")


    def forward_layer(self, layer: nn.Module, x: torch.Tensor, cond: torch.Tensor,):
        if self.block_type == 'basic':
            return layer(x)
        elif self.block_type == 'cond':
            return layer(x, cond)
        else:
            raise NotImplementedError

    def forward(self, x: torch.Tensor, cond: torch.Tensor = None):
        # x: [N, L, D]
        # cond: [N, L_cond, D_cond] or None
        for layer in self.layers:
            x = self.forward_layer(layer, x, cond)
        x = self.norm(x)
        return x

class Voxel2Triplane(nn.Module):
    """
    Full model of the basic single-view large reconstruction model.
    """
    def __init__(self, transformer_dim: int, transformer_layers: int, transformer_heads: int,
                 triplane_low_res: int, triplane_high_res: int, triplane_dim: int, voxel_feat_dim: int, normalize_vox_feat=False, voxel_dim=16):
        super().__init__()
        
        # attributes
        self.triplane_low_res = triplane_low_res
        self.triplane_high_res = triplane_high_res
        self.triplane_dim = triplane_dim
        self.voxel_feat_dim = voxel_feat_dim

        # initialize pos_embed with 1/sqrt(dim) * N(0, 1)
        self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, transformer_dim) * (1. / transformer_dim) ** 0.5)
        self.transformer = TransformerDecoder(
            block_type='cond',
            num_layers=transformer_layers, num_heads=transformer_heads,
            inner_dim=transformer_dim, cond_dim=voxel_feat_dim
        )
        self.upsampler = nn.ConvTranspose2d(transformer_dim, triplane_dim, kernel_size=8, stride=8, padding=0)

        self.normalize_vox_feat = normalize_vox_feat
        if normalize_vox_feat:
            self.vox_norm = nn.LayerNorm(voxel_feat_dim, eps=1e-6)
            self.vox_pos_embed = nn.Parameter(torch.randn(1, voxel_dim * voxel_dim * voxel_dim, voxel_feat_dim) * (1. / voxel_feat_dim) ** 0.5)

    def forward_transformer(self, voxel_feats):
        N = voxel_feats.shape[0]
        x = self.pos_embed.repeat(N, 1, 1)  # [N, L, D]
        if self.normalize_vox_feat:
            vox_pos_embed = self.vox_pos_embed.repeat(N, 1, 1)  # [N, L, D]
            voxel_feats = self.vox_norm(voxel_feats + vox_pos_embed)
        x = self.transformer(
            x,
            cond=voxel_feats
        )
        return x

    def reshape_upsample(self, tokens):
        N = tokens.shape[0]
        H = W = self.triplane_low_res
        x = tokens.view(N, 3, H, W, -1)
        x = torch.einsum('nihwd->indhw', x)  # [3, N, D, H, W]
        x = x.contiguous().view(3*N, -1, H, W)  # [3*N, D, H, W]
        x = self.upsampler(x)  # [3*N, D', H', W']
        x = x.view(3, N, *x.shape[-3:])  # [3, N, D', H', W']
        x = torch.einsum('indhw->nidhw', x)  # [N, 3, D', H', W']
        x = x.contiguous()
        return x

    def forward(self, voxel_feats):
        N = voxel_feats.shape[0]

        # encode image
        assert voxel_feats.shape[-1] == self.voxel_feat_dim, \
            f"Feature dimension mismatch: {voxel_feats.shape[-1]} vs {self.voxel_feat_dim}"

        # transformer generating planes
        tokens = self.forward_transformer(voxel_feats)
        planes = self.reshape_upsample(tokens)
        assert planes.shape[0] == N, "Batch size mismatch for planes"
        assert planes.shape[1] == 3, "Planes should have 3 channels"

        return planes


class TriplaneTransformer(nn.Module):
    """
    Full model of the basic single-view large reconstruction model.
    """
    def __init__(self, input_dim: int, transformer_dim: int, transformer_layers: int, transformer_heads: int,
                 triplane_low_res: int, triplane_high_res: int, triplane_dim: int):
        super().__init__()
        
        # attributes
        self.triplane_low_res = triplane_low_res
        self.triplane_high_res = triplane_high_res
        self.triplane_dim = triplane_dim

        # initialize pos_embed with 1/sqrt(dim) * N(0, 1)
        self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, transformer_dim) * (1. / transformer_dim) ** 0.5)
        self.transformer = TransformerDecoder(
            block_type='basic',
            num_layers=transformer_layers, num_heads=transformer_heads,
            inner_dim=transformer_dim,
        )
      
        self.downsampler = nn.Sequential(
            nn.Conv2d(input_dim, transformer_dim, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # Reduces size from 128x128 to 64x64
            
            nn.Conv2d(transformer_dim, transformer_dim, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # Reduces size from 64x64 to 32x32
        )

        self.upsampler = nn.ConvTranspose2d(transformer_dim, triplane_dim, kernel_size=4, stride=4, padding=0)

        self.mlp = nn.Sequential(
            nn.Linear(input_dim, triplane_dim),
            nn.ReLU(),
            nn.Linear(triplane_dim, triplane_dim)
        )

    def forward_transformer(self, triplanes):
        N = triplanes.shape[0]
        tokens = torch.einsum('nidhw->nihwd', triplanes).reshape(N, self.pos_embed.shape[1], -1) # [N, L, D]
        x = self.pos_embed.repeat(N, 1, 1) + tokens # [N, L, D]
        x = self.transformer(x)
        return x

    def reshape_downsample(self, triplanes):
        N = triplanes.shape[0]
        H = W = self.triplane_high_res
        x = triplanes.view(N, 3, -1, H, W)
        x = torch.einsum('nidhw->indhw', x)  # [3, N, D, H, W]
        x = x.contiguous().view(3*N, -1, H, W)  # [3*N, D, H, W]
        x = self.downsampler(x)  # [3*N, D', H', W']
        x = x.view(3, N, *x.shape[-3:])  # [3, N, D', H', W']
        x = torch.einsum('indhw->nidhw', x)  # [N, 3, D', H', W']
        x = x.contiguous()
        return x

    def reshape_upsample(self, tokens):
        N = tokens.shape[0]
        H = W = self.triplane_low_res
        x = tokens.view(N, 3, H, W, -1)
        x = torch.einsum('nihwd->indhw', x)  # [3, N, D, H, W]
        x = x.contiguous().view(3*N, -1, H, W)  # [3*N, D, H, W]
        x = self.upsampler(x)  # [3*N, D', H', W']
        x = x.view(3, N, *x.shape[-3:])  # [3, N, D', H', W']
        x = torch.einsum('indhw->nidhw', x)  # [N, 3, D', H', W']
        x = x.contiguous()
        return x
    
    def forward(self, triplanes):
        downsampled_triplanes = self.reshape_downsample(triplanes)
        tokens = self.forward_transformer(downsampled_triplanes)
        residual = self.reshape_upsample(tokens)
        
        triplanes = triplanes.permute(0, 1, 3, 4, 2).contiguous()
        triplanes = self.mlp(triplanes)
        triplanes = triplanes.permute(0, 1, 4, 2, 3).contiguous()
        planes = triplanes + residual
        return planes