File size: 12,619 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from dataclasses import dataclass
import os
import sys
import torch
import trimesh
from torch import nn
from transformers import AutoModelForCausalLM
from transformers.generation.logits_process import LogitsProcessorList
from einops import rearrange

from modules.bbox_gen.models.image_encoder import DINOv2ImageEncoder
from modules.bbox_gen.config import parse_structured
from modules.bbox_gen.models.bboxopt import BBoxOPT, BBoxOPTConfig
from modules.bbox_gen.utils.bbox_tokenizer import BoundsTokenizerDiag
from modules.bbox_gen.models.bbox_gen_models import GroupEmbedding, MultiModalProjector, MeshDecodeLogitsProcessor, SparseStructureEncoder

current_dir = os.path.dirname(os.path.abspath(__file__))
modules_dir = os.path.dirname(os.path.dirname(current_dir))
partfield_dir = os.path.join(modules_dir, 'PartField')
if partfield_dir not in sys.path:
    sys.path.insert(0, partfield_dir)
import importlib.util
from partfield.config import default_argument_parser, setup


class BboxGen(nn.Module):

    @dataclass
    class Config:
        # encoder config
        encoder_dim_feat: int = 3
        encoder_dim: int = 64
        encoder_heads: int = 4
        encoder_token_num: int = 256
        encoder_qkv_bias: bool = False
        encoder_use_ln_post: bool = True
        encoder_use_checkpoint: bool = False
        encoder_num_embed_freqs: int = 8
        encoder_embed_include_pi: bool = False
        encoder_init_scale: float = 0.25
        encoder_random_fps: bool = True
        encoder_learnable_query: bool = False
        encoder_layers: int = 4
        group_embedding_dim: int = 64

        # decoder config
        vocab_size: int = 518
        decoder_hidden_size: int = 1536
        decoder_num_hidden_layers: int = 24
        decoder_ffn_dim: int = 6144
        decoder_heads: int = 16
        decoder_use_flash_attention: bool = True
        decoder_gradient_checkpointing: bool = True

        # data config
        bins: int = 64
        BOS_id: int = 64
        EOS_id: int = 65
        PAD_id: int = 66
        max_length: int = 2187  # bos + 50x2x3 + 1374 + 512
        voxel_token_length: int = 1886
        voxel_token_placeholder: int = -1

        # tokenizer config
        max_group_size: int = 50

        # voxel encoder
        partfield_encoder_path: str = ""

    cfg: Config

    def __init__(self, cfg):
        super().__init__()
        self.cfg = parse_structured(self.Config, cfg)

        self.image_encoder = DINOv2ImageEncoder(
            model_name="facebook/dinov2-with-registers-large",
        )

        self.image_projector = MultiModalProjector(
            in_features=(1024 + self.cfg.group_embedding_dim),
            out_features=self.cfg.decoder_hidden_size,
        )

        self.group_embedding = GroupEmbedding(
            max_group_size=self.cfg.max_group_size,
            hidden_size=self.cfg.group_embedding_dim,
        )

        self.decoder_config = BBoxOPTConfig(
            vocab_size=self.cfg.vocab_size,
            hidden_size=self.cfg.decoder_hidden_size,
            num_hidden_layers=self.cfg.decoder_num_hidden_layers,
            ffn_dim=self.cfg.decoder_ffn_dim,
            max_position_embeddings=self.cfg.max_length,
            num_attention_heads=self.cfg.decoder_heads,
            pad_token_id=self.cfg.PAD_id,
            bos_token_id=self.cfg.BOS_id,
            eos_token_id=self.cfg.EOS_id,
            use_cache=True,
            init_std=0.02,
        )

        if self.cfg.decoder_use_flash_attention:
            self.decoder: BBoxOPT = AutoModelForCausalLM.from_config(
                self.decoder_config, 
                torch_dtype=torch.bfloat16,
                attn_implementation="flash_attention_2"
            )
        else:
            self.decoder: BBoxOPT = AutoModelForCausalLM.from_config(
                self.decoder_config, 
            )
        if self.cfg.decoder_gradient_checkpointing:
            self.decoder.gradient_checkpointing_enable()

        self.logits_processor = LogitsProcessorList()

        self.logits_processor.append(MeshDecodeLogitsProcessor(
            bins=self.cfg.bins,
            BOS_id=self.cfg.BOS_id,
            EOS_id=self.cfg.EOS_id,
            PAD_id=self.cfg.PAD_id,
            vertices_num=2,
        ))
        self.tokenizer = BoundsTokenizerDiag(
            bins=self.cfg.bins,
            BOS_id=self.cfg.BOS_id,
            EOS_id=self.cfg.EOS_id,
            PAD_id=self.cfg.PAD_id,
        )

        self._load_partfield_encoder()

        self.partfield_voxel_encoder = SparseStructureEncoder(
            in_channels=451,
            channels=[448, 448, 448, 1024],
            latent_channels=448,
            num_res_blocks=1,
            num_res_blocks_middle=1,
            norm_type="layer",
        )
    
    
    def _load_partfield_encoder(self):
        # Load PartField encoder
        model_spec = importlib.util.spec_from_file_location(
                "partfield.partfield_encoder", 
                os.path.join(partfield_dir, "partfield", "partfield_encoder.py")
            )
        model_module = importlib.util.module_from_spec(model_spec)
        model_spec.loader.exec_module(model_module)
        Model = model_module.Model
        parser = default_argument_parser()
        args = []
        args.extend(["-c", os.path.join(partfield_dir, "configs/final/demo.yaml")])
        args.append("--opts")
        args.extend(["continue_ckpt", self.cfg.partfield_encoder_path])
        parsed_args = parser.parse_args(args)
        cfg = setup(parsed_args, freeze=False)
        self.partfield_encoder = Model(cfg)
        self.partfield_encoder.eval()
        weights = torch.load(self.cfg.partfield_encoder_path)["state_dict"]
        self.partfield_encoder.load_state_dict(weights)
        for param in self.partfield_encoder.parameters():
            param.requires_grad = False
        print("PartField encoder loaded")
    
    def _prepare_lm_inputs(self, voxel_token, input_ids):
        inputs_embeds = torch.zeros(input_ids.shape[0], input_ids.shape[1], self.cfg.decoder_hidden_size, device=input_ids.device, dtype=voxel_token.dtype)
        voxel_token_mask = (input_ids == self.cfg.voxel_token_placeholder)
        inputs_embeds[voxel_token_mask] = voxel_token.view(-1, self.cfg.decoder_hidden_size)

        inputs_embeds[~voxel_token_mask] = self.decoder.get_input_embeddings()(input_ids[~voxel_token_mask]).to(dtype=inputs_embeds.dtype)

        attention_mask = (input_ids != self.cfg.PAD_id)
        return inputs_embeds, attention_mask.long()
    
    def forward(self, batch):

        image_latents = self.image_encoder(batch['images'])
        masks = batch['masks']
        masks_emb = self.group_embedding(masks)
        masks_emb = rearrange(masks_emb, 'b c h w -> b (h w) c') # B x Q x C
        group_emb = torch.zeros((image_latents.shape[0], image_latents.shape[1], masks_emb.shape[2]), device=image_latents.device, dtype=image_latents.dtype)
        group_emb[:, :masks_emb.shape[1], :] = masks_emb
        image_latents = torch.cat([image_latents, group_emb], dim=-1) 
        image_latents = self.image_projector(image_latents)

        points = batch['points'][..., :3]
        rot_matrix = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=points.device, dtype=points.dtype)
        rot_points = torch.matmul(points, rot_matrix)
        rot_points = rot_points * (2 * 0.9)  # from (-0.5, 0.5) to (-1, 1)

        partfield_feat = self.partfield_encoder.encode(rot_points)
        feat_volume = torch.zeros((points.shape[0], 448, 64, 64, 64), device=partfield_feat.device, dtype=partfield_feat.dtype)
        whole_voxel_index = batch['whole_voxel_index']  # (b, m, 3)

        batch_size, num_points = whole_voxel_index.shape[0], whole_voxel_index.shape[1]
        batch_indices = torch.arange(batch_size, device=whole_voxel_index.device).unsqueeze(1).expand(-1, num_points)  # (b, m)
        batch_flat = batch_indices.flatten()  # (b*m,)
        x_flat = whole_voxel_index[..., 0].flatten()  # (b*m,)
        y_flat = whole_voxel_index[..., 1].flatten()  # (b*m,)
        z_flat = whole_voxel_index[..., 2].flatten()  # (b*m,)
        partfield_feat_flat = partfield_feat.reshape(-1, 448)  # (b*m, 448)
        feat_volume[batch_flat, :, x_flat, y_flat, z_flat] = partfield_feat_flat
        
        xyz_volume = torch.zeros((points.shape[0], 3, 64, 64, 64), device=points.device, dtype=points.dtype)
        xyz_volume[batch_flat, :, x_flat, y_flat, z_flat] = points.reshape(-1, 3)
        feat_volume = torch.cat([feat_volume, xyz_volume], dim=1)

        feat_volume = self.partfield_voxel_encoder(feat_volume)
        feat_volume = rearrange(feat_volume, 'b c x y z -> b (x y z) c')

        voxel_token = torch.cat([image_latents, feat_volume], dim=1) # B x N x D

        input_ids = batch['input_ids']
        inputs_embeds, attention_mask = self._prepare_lm_inputs(voxel_token, input_ids)
        output = self.decoder(
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            return_dict=True,
        )
        return {
            "logits": output.logits,
        }

    def gen_mesh_from_bounds(self, bounds, random_color):
        bboxes = []
        for j in range(bounds.shape[0]):
            bbox = trimesh.primitives.Box(bounds=bounds[j])
            color = random_color[j]
            bbox.visual.vertex_colors = color
            bboxes.append(bbox)
        mesh = trimesh.Scene(bboxes)
        return mesh
    
    def generate(self, batch):

        image_latents = self.image_encoder(batch['images'])
        masks = batch['masks']
        masks_emb = self.group_embedding(masks)
        masks_emb = rearrange(masks_emb, 'b c h w -> b (h w) c') # B x Q x C
        group_emb = torch.zeros((image_latents.shape[0], image_latents.shape[1], masks_emb.shape[2]), device=image_latents.device, dtype=image_latents.dtype)
        group_emb[:, :masks_emb.shape[1], :] = masks_emb
        image_latents = torch.cat([image_latents, group_emb], dim=-1) 
        image_latents = self.image_projector(image_latents)

        points = batch['points'][..., :3]
        rot_matrix = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=points.device, dtype=points.dtype)
        rot_points = torch.matmul(points, rot_matrix)
        rot_points = rot_points * (2 * 0.9)  # from (-0.5, 0.5) to (-1, 1)

        partfield_feat = self.partfield_encoder.encode(rot_points)
        feat_volume = torch.zeros((points.shape[0], 448, 64, 64, 64), device=partfield_feat.device, dtype=partfield_feat.dtype)
        whole_voxel_index = batch['whole_voxel_index']  # (b, m, 3)

        batch_size, num_points = whole_voxel_index.shape[0], whole_voxel_index.shape[1]
        batch_indices = torch.arange(batch_size, device=whole_voxel_index.device).unsqueeze(1).expand(-1, num_points)  # (b, m)
        batch_flat = batch_indices.flatten()  # (b*m,)
        x_flat = whole_voxel_index[..., 0].flatten()  # (b*m,)
        y_flat = whole_voxel_index[..., 1].flatten()  # (b*m,)
        z_flat = whole_voxel_index[..., 2].flatten()  # (b*m,)
        partfield_feat_flat = partfield_feat.reshape(-1, 448)  # (b*m, 448)
        feat_volume[batch_flat, :, x_flat, y_flat, z_flat] = partfield_feat_flat

        xyz_volume = torch.zeros((points.shape[0], 3, 64, 64, 64), device=points.device, dtype=points.dtype)
        xyz_volume[batch_flat, :, x_flat, y_flat, z_flat] = points.reshape(-1, 3)
        feat_volume = torch.cat([feat_volume, xyz_volume], dim=1)

        feat_volume = self.partfield_voxel_encoder(feat_volume)
        feat_volume = rearrange(feat_volume, 'b c x y z -> b (x y z) c')

        voxel_token = torch.cat([image_latents, feat_volume], dim=1) # B x N x D

        meshes = []
        mesh_names = []
        bboxes = []

        output = self.decoder.generate(
            inputs_embeds=voxel_token,
            max_new_tokens=self.cfg.max_length - voxel_token.shape[1],
            logits_processor=self.logits_processor,
            do_sample=True,
            top_k=5,
            top_p=0.95,
            temperature=0.5,
            use_cache=True,
        )

        for i in range(output.shape[0]):
            bounds = self.tokenizer.decode(output[i].detach().cpu().numpy(), coord_rg=(-0.5, 0.5))
            # mesh = self.gen_mesh_from_bounds(bounds, batch['random_color'][i])
            # meshes.append(mesh)
            mesh_names.append("topk=5")
            bboxes.append(bounds)

        return {
            # 'meshes': meshes,
            'mesh_names': mesh_names,
            'bboxes': bboxes,
        }