File size: 7,311 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
from torch import nn
import torch.nn.functional as F
from diffusers.models.normalization import FP32LayerNorm
from diffusers.models.attention import FeedForward
from transformers.generation.logits_process import LogitsProcessor
from typing import List, Literal, Optional

from modules.bbox_gen.modules.norm import GroupNorm32, ChannelLayerNorm32


class GroupEmbedding(nn.Module):
    def __init__(self, max_group_size, hidden_size=64):
        super().__init__()

        self.group_embedding = nn.Embedding(max_group_size + 1, hidden_size)  # +1 for background
        self.group_embedding.weight.data.normal_(mean=0.0, std=0.02)
    
    def forward(self, masks):
        batch_size, height, width = masks.shape
        masks_flat = masks.reshape(batch_size, -1)
        embeddings = self.group_embedding(masks_flat)
        embeddings = embeddings.reshape(batch_size, height, width, -1)
        embeddings = embeddings.permute(0, 3, 1, 2)
        return embeddings


class MultiModalProjector(torch.nn.Module):
    def __init__(self, in_features: int, out_features: int, pos_embed_seq_len=None):
        super().__init__()

        self.norm1 = FP32LayerNorm(in_features)
        self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
        self.norm2 = FP32LayerNorm(out_features)
        if pos_embed_seq_len is not None:
            self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_seq_len, in_features))
        else:
            self.pos_embed = None

    def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
        if self.pos_embed is not None:
            batch_size, seq_len, embed_dim = encoder_hidden_states_image.shape
            encoder_hidden_states_image = encoder_hidden_states_image.view(-1, 2 * seq_len, embed_dim)
            encoder_hidden_states_image = encoder_hidden_states_image + self.pos_embed

        hidden_states = self.norm1(encoder_hidden_states_image)
        hidden_states = self.ff(hidden_states)
        hidden_states = self.norm2(hidden_states)
        return hidden_states


class MeshDecodeLogitsProcessor(LogitsProcessor):
    def __init__(self, bins, BOS_id, EOS_id, PAD_id, vertices_num=8):
        super().__init__()
        self.bins = bins
        self.BOS_id = BOS_id
        self.EOS_id = EOS_id
        self.PAD_id = PAD_id
        self.filter_value = -float('inf')
        self.vertices_num = vertices_num
    
    def force_token(self, scores, token_id):
        mask = torch.ones_like(scores, dtype=torch.bool)
        mask[:, token_id] = False
        scores[mask] = self.filter_value
    
    def __call__(self, input_ids, scores):
        # # all rules:
        # # 1. first token: BOS
        current_len = input_ids.shape[-1]
        if current_len == 0:
            # force bos
            self.force_token(scores, self.BOS_id)
        elif current_len <= self.vertices_num * 3 + 1:
            scores[:, self.bins:] = self.filter_value
        else:
            scores[:, self.BOS_id] = self.filter_value
            scores[:, self.PAD_id] = self.filter_value
            
            effective_tokens = current_len - 1
            complete_boxes = effective_tokens % (self.vertices_num * 3) == 0
            # print(effective_tokens, complete_boxes)
            if not complete_boxes:
                scores[:, self.EOS_id] = self.filter_value

        return scores
    

def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
    """
    Return a normalization layer.
    """
    if norm_type == "group":
        return GroupNorm32(32, *args, **kwargs)
    elif norm_type == "layer":
        return ChannelLayerNorm32(*args, **kwargs)
    else:
        raise ValueError(f"Invalid norm type {norm_type}")


class ResBlock3d(nn.Module):
    def __init__(
        self,
        channels: int,
        out_channels: Optional[int] = None,
        norm_type: Literal["group", "layer"] = "layer",
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels

        self.norm1 = norm_layer(norm_type, channels)
        self.norm2 = norm_layer(norm_type, self.out_channels)
        self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
        self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
        self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        h = self.norm1(x)
        h = F.silu(h)
        h = self.conv1(h)
        h = self.norm2(h)
        h = F.silu(h)
        h = self.conv2(h)
        h = h + self.skip_connection(x)
        return h


class DownsampleBlock3d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        mode: Literal["conv", "avgpool"] = "conv",
    ):
        assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"

        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        if mode == "conv":
            self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
        elif mode == "avgpool":
            assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if hasattr(self, "conv"):
            return self.conv(x)
        else:
            return F.avg_pool3d(x, 2)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module
    

class SparseStructureEncoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        latent_channels: int,
        num_res_blocks: int,
        channels: List[int],
        num_res_blocks_middle: int = 2,
        norm_type: Literal["group", "layer"] = "layer",
    ):
        super().__init__()
        self.in_channels = in_channels
        self.latent_channels = latent_channels
        self.num_res_blocks = num_res_blocks
        self.channels = channels
        self.num_res_blocks_middle = num_res_blocks_middle
        self.norm_type = norm_type
        self.dtype = torch.float16
        self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)

        self.blocks = nn.ModuleList([])
        for i, ch in enumerate(channels):
            self.blocks.extend([
                ResBlock3d(ch, ch)
                for _ in range(num_res_blocks)
            ])
            if i < len(channels) - 1:
                self.blocks.append(
                    DownsampleBlock3d(ch, channels[i+1])
                )
        
        self.middle_block = nn.Sequential(*[
            ResBlock3d(channels[-1], channels[-1])
            for _ in range(num_res_blocks_middle)
        ])

    @property
    def device(self) -> torch.device:
        """
        Return the device of the model.
        """
        return next(self.parameters()).device

    def forward(self, x: torch.Tensor):
        h = self.input_layer(x)
        h = h.type(self.dtype)

        for block in self.blocks:
            h = block(h)
        h = self.middle_block(h)

        h = h.type(x.dtype)
        return h