File size: 20,533 Bytes
491eded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from typing import *
from contextlib import contextmanager
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import transforms
from PIL import Image
import rembg
from transformers import AutoModel
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
from ..modules.sparse.basic import SparseTensor, sparse_cat

class OmniPartImageTo3DPipeline(Pipeline):
    """
    Pipeline for inferring OmniPart image-to-3D models.

    Args:
        models (dict[str, nn.Module]): The models to use in the pipeline.
        sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
        slat_sampler (samplers.Sampler): The sampler for the structured latent.
        slat_normalization (dict): The normalization parameters for the structured latent.
        image_cond_model (str): The name of the image conditioning model.
    """
    def __init__(
        self,
        models: Dict[str, nn.Module] = None,
        sparse_structure_sampler: samplers.Sampler = None,
        slat_sampler: samplers.Sampler = None,
        slat_normalization: dict = None,
        image_cond_model: str = None,
    ):
        # Skip initialization if models is None (used in from_pretrained)
        if models is None:
            return
            
        super().__init__(models)
        self.sparse_structure_sampler = sparse_structure_sampler
        self.slat_sampler = slat_sampler
        self.sparse_structure_sampler_params = {}
        self.slat_sampler_params = {}
        self.slat_normalization = slat_normalization
        self.rembg_session = None
        self._init_image_cond_model(image_cond_model)

    
    @staticmethod
    def from_pretrained(path: str) -> "OmniPartImageTo3DPipeline":
        """
        Load a pretrained model.

        Args:
            path (str): The path to the model. Can be either local path or a Hugging Face repository.
            
        Returns:
            OmniPartImageTo3DPipeline: Loaded pipeline instance
        """
        pipeline = super(OmniPartImageTo3DPipeline, OmniPartImageTo3DPipeline).from_pretrained(path)
        new_pipeline = OmniPartImageTo3DPipeline()
        new_pipeline.__dict__ = pipeline.__dict__
        args = pipeline._pretrained_args

        # Initialize samplers from saved arguments
        new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(
            **args['sparse_structure_sampler']['args'])
        new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']

        new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(
            **args['slat_sampler']['args'])
        new_pipeline.slat_sampler_params = args['slat_sampler']['params']

        new_pipeline.slat_normalization = args['slat_normalization']
        new_pipeline._init_image_cond_model(args['image_cond_model'])

        return new_pipeline
    
    def _init_image_cond_model(self, name: str):
        """
        Initialize the image conditioning model.
        
        Args:
            name (str): Name of the DINOv2 model to load
        """
        dinov2_model = torch.hub.load('facebookresearch/dinov2', name)
        dinov2_model.eval()
        self.models['image_cond_model'] = dinov2_model
        
        transform = transforms.Compose([
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        self.image_cond_model_transform = transform
    
    
    def preprocess_image(self, input: Image.Image, size=(518, 518)) -> Image.Image:
        """
        Preprocess the input image for the model.
        
        Args:
            input (Image.Image): Input image
            size (tuple): Target size for resizing
            
        Returns:
            Image.Image: Preprocessed image
        """
        img = np.array(input)
        if img.shape[-1] == 4:
            # Handle alpha channel by replacing transparent pixels with black
            mask_img = img[..., 3] == 0
            img[mask_img] = [0, 0, 0, 255]
            img = img[..., :3]
            img_rgb = Image.fromarray(img.astype('uint8'))
        # Resize to target size
        img_rgb = img_rgb.resize(size, resample=Image.Resampling.BILINEAR)
        return img_rgb

    @torch.no_grad()
    def encode_image(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor:
        """
        Encode the image using the conditioning model.

        Args:
            image (Union[torch.Tensor, list[Image.Image]]): The image(s) to encode

        Returns:
            torch.Tensor: The encoded features
        """
        if isinstance(image, torch.Tensor):
            assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
        elif isinstance(image, list):
            assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
            # Convert PIL images to tensors
            image = [i.resize((518, 518), Image.LANCZOS) for i in image]
            image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
            image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
            image = torch.stack(image).to(self.device)
        else:
            raise ValueError(f"Unsupported type of image: {type(image)}")
        
        # Apply normalization and run through DINOv2 model
        image = self.image_cond_model_transform(image).to(self.device)
        features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
        patchtokens = F.layer_norm(features, features.shape[-1:])
        return patchtokens

    def get_cond(self, image: Union[torch.Tensor, List[Image.Image]]) -> dict:
        """
        Get the conditioning information for the model.

        Args:
            image (Union[torch.Tensor, list[Image.Image]]): The image prompts.

        Returns:
            dict: Dictionary with conditioning information
        """
        cond = self.encode_image(image)
        neg_cond = torch.zeros_like(cond)  # Negative conditioning (zero)
        return {
            'cond': cond,
            'neg_cond': neg_cond,
        }
    
    
    def sample_sparse_structure(
        self,
        cond: dict,
        num_samples: int = 1,
        sampler_params: dict = {},
        save_coords: bool = False,
    ) -> torch.Tensor:
        """
        Sample sparse structures with the given conditioning.
        
        Args:
            cond (dict): The conditioning information.
            num_samples (int): The number of samples to generate.
            sampler_params (dict): Additional parameters for the sampler.
            save_coords (bool): Whether to save coordinates internally.
            
        Returns:
            torch.Tensor: Coordinates of the sparse structure
        """
        # Sample occupancy latent
        flow_model = self.models['sparse_structure_flow_model']
        reso = flow_model.resolution
        noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
        
        # Merge default and custom sampler parameters
        sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
        
        # Generate samples using the sampler
        z_s = self.sparse_structure_sampler.sample(
            flow_model,
            noise,
            **cond,
            **sampler_params,
            verbose=True
        ).samples
        
        # Decode occupancy latent to get coordinates
        decoder = self.models['sparse_structure_decoder']
        coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()

        if save_coords:
            self.save_coordinates = coords

        return coords
    
    @torch.no_grad()
    def get_coords(
        self,
        image: Union[Image.Image, List[Image.Image]],
        num_samples: int = 1,
        seed: int = 42,
        sparse_structure_sampler_params: dict = {},
        preprocess_image: bool = True,
        save_coords: bool = False,
    ) -> dict:
        """
        Get coordinates of the sparse structure from an input image.

        Args:
            image: Input image or list of images
            num_samples: Number of samples to generate
            seed: Random seed
            sparse_structure_sampler_params: Additional parameters for the sparse structure sampler
            preprocess_image: Whether to preprocess the image
            save_coords: Whether to save coordinates internally
            
        Returns:
            torch.Tensor: Coordinates of the sparse structure
        """
        if isinstance(image, Image.Image):
            if preprocess_image:
                image = self.preprocess_image(image)
            cond = self.get_cond([image])
            torch.manual_seed(seed)
            coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params, save_coords)
            return coords
        elif isinstance(image, torch.Tensor):
            cond = self.get_cond(image.unsqueeze(0))
            torch.manual_seed(seed)
            coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params, save_coords)
            return coords
        elif isinstance(image, list):
            if preprocess_image:
                image = [self.preprocess_image(i) for i in image]
            cond = self.get_cond(image)
            torch.manual_seed(seed)
            coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params, save_coords)
            return coords
        else:
            raise ValueError(f"Unsupported type of image: {type(image)}")
    
    
    def sample_slat(
        self,
        cond: dict,
        coords: torch.Tensor,
        part_layouts: List[slice] = None, 
        masks: torch.Tensor = None,
        sampler_params: dict = {},
        **kwargs
    ) -> sp.SparseTensor:
        # Sample structured latent
        flow_model = self.models['slat_flow_model']

        # Create noise tensor with same coordinates as the sparse structure
        noise = sp.SparseTensor(
            feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
            coords=coords,
        )
        
        # Merge default and custom sampler parameters
        sampler_params = {**self.slat_sampler_params, **sampler_params}
        
        # Add part information if provided
        if part_layouts is not None:
            kwargs['part_layouts'] = part_layouts
        if masks is not None:
            kwargs['masks'] = masks
            
        # Generate samples
        slat = self.slat_sampler.sample(
            flow_model,
            noise,
            **cond,
            **sampler_params,
            verbose=True,
            **kwargs
        ).samples
        
        # Normalize the features
        feat_dim = slat.feats.shape[1]
        base_std = torch.tensor(self.slat_normalization['std']).to(slat.device)
        base_mean = torch.tensor(self.slat_normalization['mean']).to(slat.device)
        
        # Handle different dimensionality cases
        if feat_dim == len(base_std):
            # Dimensions match, apply directly
            std = base_std[None, :]
            mean = base_mean[None, :]
        elif feat_dim == 8 and len(base_std) == 9:
            # Use first 8 dimensions when latent is 8-dimensional but normalization is 9-dimensional
            std = base_std[:8][None, :]
            mean = base_mean[:8][None, :]
            print(f"Warning: Normalizing {feat_dim}-dimensional features with first 8 dimensions of 9-dimensional parameters")
        else:
            # Handle general case of dimension mismatch
            std = torch.ones((1, feat_dim), device=slat.device)
            mean = torch.zeros((1, feat_dim), device=slat.device)
            
            copy_dim = min(feat_dim, len(base_std))
            std[0, :copy_dim] = base_std[:copy_dim]
            mean[0, :copy_dim] = base_mean[:copy_dim]
            print(f"Warning: Feature dimensions mismatch. Using {copy_dim} dimensions for normalization")
            
        # Apply normalization
        slat = slat * std + mean

        return slat
    
    @torch.no_grad()
    def get_slat(
        self,
        image: Union[Image.Image, List[Image.Image], torch.Tensor],
        coords: torch.Tensor,
        part_layouts: List[slice], 
        masks: torch.Tensor,
        seed: int = 42,
        slat_sampler_params: dict = {},
        formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
        preprocess_image: bool = True,
    ) -> dict:

        if isinstance(image, Image.Image):
            if preprocess_image:
                image = self.preprocess_image(image)
            cond = self.get_cond([image])
            torch.manual_seed(seed)
            slat = self.sample_slat(cond, coords, part_layouts, masks, slat_sampler_params)
            return self.decode_slat(self.divide_slat(slat, part_layouts), formats)
        elif isinstance(image, list):
            if preprocess_image:
                image = [self.preprocess_image(i) for i in image]
            cond = self.get_cond(image)
            torch.manual_seed(seed)
            slat = self.sample_slat(cond, coords, part_layouts, masks, slat_sampler_params)
            return self.decode_slat(self.divide_slat(slat, part_layouts), formats)
        elif isinstance(image, torch.Tensor):
            cond = self.get_cond(image.unsqueeze(0))
            torch.manual_seed(seed)
            slat = self.sample_slat(cond, coords, part_layouts, masks, slat_sampler_params)
            return self.decode_slat(self.divide_slat(slat, part_layouts), formats)
        else:
            raise ValueError(f"Unsupported type of image: {type(image)}")
    
    def decode_slat(
        self,
        slat: sp.SparseTensor,
        formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
    ) -> dict:
        """
        Decode the structured latent.

        Args:
            slat (sp.SparseTensor): The structured latent
            formats (List[str]): The formats to decode to
            
        Returns:
            dict: Decoded outputs in requested formats
        """
        ret = {}
        if 'mesh' in formats:
            ret['mesh'] = self.models['slat_decoder_mesh'](slat)
        if 'gaussian' in formats:
            ret['gaussian'] = self.models['slat_decoder_gs'](slat)
        if 'radiance_field' in formats:
            ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
        return ret
    
    def divide_slat(
        self,
        slat: sp.SparseTensor,
        part_layouts: List[slice],
    ) -> List[sp.SparseTensor]:
        """
        Divide the structured latent into parts.
        
        Args:
            slat (sp.SparseTensor): The structured latent
            part_layouts (List[slice]): Layout information for parts
            
        Returns:
            sp.SparseTensor: Processed and divided latent
        """ 
        sparse_part = []
        for part_id, part_layout in enumerate(part_layouts):
            for part_obj_id, part_slice in enumerate(part_layout):
                part_x_sparse_tensor = SparseTensor(
                    coords=slat[part_id].coords[part_slice],
                    feats=slat[part_id].feats[part_slice],
                )
                sparse_part.append(part_x_sparse_tensor)

        slat = sparse_cat(sparse_part)

        return self.remove_noise(slat)
    
    def remove_noise(self, z_batch):
        """
        Remove noise from latent vectors by filtering out points with low confidence.
        
        Args:
            z_batch: Latent vectors to process
            
        Returns:
            sp.SparseTensor: Processed latent with noise removed
        """
        # Create a new list for processed tensors
        processed_batch = []
        
        for i, z in enumerate(z_batch):
            coords = z.coords
            feats = z.feats

            # Only filter if features have a confidence dimension (9th dimension)
            if feats.shape[1] == 9:
                # Get the confidence values (last dimension)
                last_dim = feats[:, -1]
                sigmoid_val = torch.sigmoid(last_dim)

                # Calculate filtering statistics
                total_points = coords.shape[0]
                to_keep = sigmoid_val >= 0.5
                kept_points = to_keep.sum().item()
                discarded_points = total_points - kept_points
                discard_percentage = (discarded_points / total_points) * 100 if total_points > 0 else 0
                
                if kept_points == 0:
                    print(f"No points kept for part {i}")
                    continue
                
                print(f"Discarded {discarded_points}/{total_points} points ({discard_percentage:.2f}%)")
                
                # Filter coordinates and features
                coords = coords[to_keep]
                feats = feats[to_keep]
                feats = feats[:, :-1]  # Remove the confidence dimension
                
                # Create a filtered SparseTensor
                processed_z = z.replace(coords=coords, feats=feats)
            else:
                processed_z = z

            processed_batch.append(processed_z)
            
        return sparse_cat(processed_batch)

    
    @contextmanager
    def inject_sampler_multi_image(
        self,
        sampler_name: str,
        num_images: int,
        num_steps: int,
        mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
    ):
        """
        Inject a sampler with multiple images as condition.
        
        Args:
            sampler_name (str): The name of the sampler to inject
            num_images (int): The number of images to condition on
            num_steps (int): The number of steps to run the sampler for
            mode (str): Sampling strategy ('stochastic' or 'multidiffusion')
        """
        sampler = getattr(self, sampler_name)
        setattr(sampler, f'_old_inference_model', sampler._inference_model)

        if mode == 'stochastic':
            if num_images > num_steps:
                print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
                    "This may lead to performance degradation.\033[0m")

            # Create schedule for which image to use at each step
            cond_indices = (np.arange(num_steps) % num_images).tolist()
            
            def _new_inference_model(self, model, x_t, t, cond, **kwargs):
                cond_idx = cond_indices.pop(0)
                cond_i = cond[cond_idx:cond_idx+1]
                return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
        
        elif mode == 'multidiffusion':
            from .samplers import FlowEulerSampler
            
            def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
                if cfg_interval[0] <= t <= cfg_interval[1]:
                    # Average predictions from all conditions when within CFG interval
                    preds = []
                    for i in range(len(cond)):
                        preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
                    pred = sum(preds) / len(preds)
                    neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
                    return (1 + cfg_strength) * pred - cfg_strength * neg_pred
                else:
                    # Average predictions from all conditions when outside CFG interval
                    preds = []
                    for i in range(len(cond)):
                        preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
                    pred = sum(preds) / len(preds)
                    return pred
            
        else:
            raise ValueError(f"Unsupported mode: {mode}")
            
        sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))

        try:
            yield
        finally:
            # Restore original inference model
            sampler._inference_model = sampler._old_inference_model
            delattr(sampler, f'_old_inference_model')