|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from . import functional as PF |
|
|
|
__all__ = ['FrustumPointNetLoss', 'get_box_corners_3d'] |
|
|
|
|
|
class FrustumPointNetLoss(nn.Module): |
|
def __init__( |
|
self, num_heading_angle_bins, num_size_templates, size_templates, box_loss_weight=1.0, |
|
corners_loss_weight=10.0, heading_residual_loss_weight=20.0, size_residual_loss_weight=20.0): |
|
super().__init__() |
|
self.box_loss_weight = box_loss_weight |
|
self.corners_loss_weight = corners_loss_weight |
|
self.heading_residual_loss_weight = heading_residual_loss_weight |
|
self.size_residual_loss_weight = size_residual_loss_weight |
|
|
|
self.num_heading_angle_bins = num_heading_angle_bins |
|
self.num_size_templates = num_size_templates |
|
self.register_buffer('size_templates', size_templates.view(self.num_size_templates, 3)) |
|
self.register_buffer( |
|
'heading_angle_bin_centers', torch.arange(0, 2 * np.pi, 2 * np.pi / self.num_heading_angle_bins) |
|
) |
|
|
|
def forward(self, inputs, targets): |
|
mask_logits = inputs['mask_logits'] |
|
center_reg = inputs['center_reg'] |
|
center = inputs['center'] |
|
heading_scores = inputs['heading_scores'] |
|
heading_residuals_normalized = inputs['heading_residuals_normalized'] |
|
heading_residuals = inputs['heading_residuals'] |
|
size_scores = inputs['size_scores'] |
|
size_residuals_normalized = inputs['size_residuals_normalized'] |
|
size_residuals = inputs['size_residuals'] |
|
|
|
mask_logits_target = targets['mask_logits'] |
|
center_target = targets['center'] |
|
heading_bin_id_target = targets['heading_bin_id'] |
|
heading_residual_target = targets['heading_residual'] |
|
size_template_id_target = targets['size_template_id'] |
|
size_residual_target = targets['size_residual'] |
|
|
|
batch_size = center.size(0) |
|
batch_id = torch.arange(batch_size, device=center.device) |
|
|
|
|
|
mask_loss = F.cross_entropy(mask_logits, mask_logits_target) |
|
heading_loss = F.cross_entropy(heading_scores, heading_bin_id_target) |
|
size_loss = F.cross_entropy(size_scores, size_template_id_target) |
|
center_loss = PF.huber_loss(torch.norm(center_target - center, dim=-1), delta=2.0) |
|
center_reg_loss = PF.huber_loss(torch.norm(center_target - center_reg, dim=-1), delta=1.0) |
|
|
|
|
|
heading_residuals_normalized = heading_residuals_normalized[batch_id, heading_bin_id_target] |
|
heading_residual_normalized_target = heading_residual_target / (np.pi / self.num_heading_angle_bins) |
|
heading_residual_normalized_loss = PF.huber_loss( |
|
heading_residuals_normalized - heading_residual_normalized_target, delta=1.0 |
|
) |
|
size_residuals_normalized = size_residuals_normalized[batch_id, size_template_id_target] |
|
size_residual_normalized_target = size_residual_target / self.size_templates[size_template_id_target] |
|
size_residual_normalized_loss = PF.huber_loss( |
|
torch.norm(size_residual_normalized_target - size_residuals_normalized, dim=-1), delta=1.0 |
|
) |
|
|
|
|
|
heading = (heading_residuals[batch_id, heading_bin_id_target] |
|
+ self.heading_angle_bin_centers[heading_bin_id_target]) |
|
|
|
size = (size_residuals[batch_id, size_template_id_target] |
|
+ self.size_templates[size_template_id_target]) |
|
corners = get_box_corners_3d(centers=center, headings=heading, sizes=size, with_flip=False) |
|
heading_target = self.heading_angle_bin_centers[heading_bin_id_target] + heading_residual_target |
|
size_target = self.size_templates[size_template_id_target] + size_residual_target |
|
corners_target, corners_target_flip = get_box_corners_3d( |
|
centers=center_target, headings=heading_target, |
|
sizes=size_target, with_flip=True) |
|
corners_loss = PF.huber_loss( |
|
torch.min( |
|
torch.norm(corners - corners_target, dim=1), torch.norm(corners - corners_target_flip, dim=1) |
|
), delta=1.0) |
|
|
|
loss = mask_loss + self.box_loss_weight * ( |
|
center_loss + center_reg_loss + heading_loss + size_loss |
|
+ self.heading_residual_loss_weight * heading_residual_normalized_loss |
|
+ self.size_residual_loss_weight * size_residual_normalized_loss |
|
+ self.corners_loss_weight * corners_loss |
|
) |
|
|
|
return loss |
|
|
|
|
|
def get_box_corners_3d(centers, headings, sizes, with_flip=False): |
|
""" |
|
:param centers: coords of box centers, FloatTensor[N, 3] |
|
:param headings: heading angles, FloatTensor[N, ] |
|
:param sizes: box sizes, FloatTensor[N, 3] |
|
:param with_flip: bool, whether to return flipped box (headings + np.pi) |
|
:return: |
|
coords of box corners, FloatTensor[N, 3, 8] |
|
NOTE: corner points are in counter clockwise order, e.g., |
|
2--1 |
|
3--0 5 |
|
7--4 |
|
""" |
|
l = sizes[:, 0] |
|
w = sizes[:, 1] |
|
h = sizes[:, 2] |
|
x_corners = torch.stack([l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2], dim=1) |
|
y_corners = torch.stack([h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2], dim=1) |
|
z_corners = torch.stack([w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2], dim=1) |
|
|
|
c = torch.cos(headings) |
|
s = torch.sin(headings) |
|
o = torch.ones_like(headings) |
|
z = torch.zeros_like(headings) |
|
|
|
centers = centers.unsqueeze(-1) |
|
corners = torch.stack([x_corners, y_corners, z_corners], dim=1) |
|
R = torch.stack([c, z, s, z, o, z, -s, z, c], dim=1).view(-1, 3, 3) |
|
if with_flip: |
|
R_flip = torch.stack([-c, z, -s, z, o, z, s, z, -c], dim=1).view(-1, 3, 3) |
|
return torch.matmul(R, corners) + centers, torch.matmul(R_flip, corners) + centers |
|
else: |
|
return torch.matmul(R, corners) + centers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|