|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
from partfield.model.UNet.buildingblocks import DoubleConv, ResNetBlock, \ |
|
create_decoders, create_encoders |
|
|
|
def number_of_features_per_level(init_channel_number, num_levels): |
|
return [init_channel_number * 2 ** k for k in range(num_levels)] |
|
|
|
class AbstractUNet(nn.Module): |
|
""" |
|
Base class for standard and residual UNet. |
|
|
|
Args: |
|
in_channels (int): number of input channels |
|
out_channels (int): number of output segmentation masks; |
|
Note that the of out_channels might correspond to either |
|
different semantic classes or to different binary segmentation mask. |
|
It's up to the user of the class to interpret the out_channels and |
|
use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) |
|
or BCEWithLogitsLoss (two-class) respectively) |
|
f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number |
|
of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4 |
|
final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution, |
|
otherwise apply nn.Softmax. In effect only if `self.training == False`, i.e. during validation/testing |
|
basic_module: basic model for the encoder/decoder (DoubleConv, ResNetBlock, ....) |
|
layer_order (string): determines the order of layers in `SingleConv` module. |
|
E.g. 'crg' stands for GroupNorm3d+Conv3d+ReLU. See `SingleConv` for more info |
|
num_groups (int): number of groups for the GroupNorm |
|
num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int) |
|
default: 4 |
|
is_segmentation (bool): if True and the model is in eval mode, Sigmoid/Softmax normalization is applied |
|
after the final convolution; if False (regression problem) the normalization layer is skipped |
|
conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module |
|
pool_kernel_size (int or tuple): the size of the window |
|
conv_padding (int or tuple): add zero-padding added to all three sides of the input |
|
conv_upscale (int): number of the convolution to upscale in encoder if DoubleConv, default: 2 |
|
upsample (str): algorithm used for decoder upsampling: |
|
InterpolateUpsampling: 'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area' |
|
TransposeConvUpsampling: 'deconv' |
|
No upsampling: None |
|
Default: 'default' (chooses automatically) |
|
dropout_prob (float or tuple): dropout probability, default: 0.1 |
|
is3d (bool): if True the model is 3D, otherwise 2D, default: True |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=4, is_segmentation=False, conv_kernel_size=3, pool_kernel_size=2, |
|
conv_padding=1, conv_upscale=2, upsample='default', dropout_prob=0.1, is3d=True, encoder_only=False): |
|
super(AbstractUNet, self).__init__() |
|
|
|
if isinstance(f_maps, int): |
|
f_maps = number_of_features_per_level(f_maps, num_levels=num_levels) |
|
|
|
assert isinstance(f_maps, list) or isinstance(f_maps, tuple) |
|
assert len(f_maps) > 1, "Required at least 2 levels in the U-Net" |
|
if 'g' in layer_order: |
|
assert num_groups is not None, "num_groups must be specified if GroupNorm is used" |
|
|
|
|
|
self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, |
|
conv_padding, conv_upscale, dropout_prob, |
|
layer_order, num_groups, pool_kernel_size, is3d) |
|
|
|
self.encoder_only = encoder_only |
|
|
|
if encoder_only == False: |
|
|
|
self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, |
|
layer_order, num_groups, upsample, dropout_prob, |
|
is3d) |
|
|
|
|
|
if is3d: |
|
self.final_conv = nn.Conv3d(f_maps[1], out_channels, 1) |
|
else: |
|
self.final_conv = nn.Conv2d(f_maps[1], out_channels, 1) |
|
|
|
if is_segmentation: |
|
|
|
if final_sigmoid: |
|
self.final_activation = nn.Sigmoid() |
|
else: |
|
self.final_activation = nn.Softmax(dim=1) |
|
else: |
|
|
|
self.final_activation = None |
|
|
|
def forward(self, x, return_bottleneck_feat=False): |
|
|
|
encoders_features = [] |
|
for encoder in self.encoders: |
|
x = encoder(x) |
|
|
|
encoders_features.insert(0, x) |
|
|
|
|
|
|
|
bottleneck_feat = encoders_features[0] |
|
if self.encoder_only: |
|
return bottleneck_feat |
|
else: |
|
encoders_features = encoders_features[1:] |
|
|
|
|
|
for decoder, encoder_features in zip(self.decoders, encoders_features): |
|
|
|
|
|
x = decoder(encoder_features, x) |
|
|
|
x = self.final_conv(x) |
|
|
|
if self.final_activation is not None: |
|
x = self.final_activation(x) |
|
|
|
if return_bottleneck_feat: |
|
return x, bottleneck_feat |
|
else: |
|
return x |
|
|
|
class ResidualUNet3D(AbstractUNet): |
|
""" |
|
Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf. |
|
Uses ResNetBlock as a basic building block, summation joining instead |
|
of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts). |
|
Since the model effectively becomes a residual net, in theory it allows for deeper UNet. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=(8, 16, 64, 256, 1024), layer_order='gcr', |
|
num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, |
|
conv_upscale=2, upsample='default', dropout_prob=0.1, encoder_only=False, **kwargs): |
|
super(ResidualUNet3D, self).__init__(in_channels=in_channels, |
|
out_channels=out_channels, |
|
final_sigmoid=final_sigmoid, |
|
basic_module=ResNetBlock, |
|
f_maps=f_maps, |
|
layer_order=layer_order, |
|
num_groups=num_groups, |
|
num_levels=num_levels, |
|
is_segmentation=is_segmentation, |
|
conv_padding=conv_padding, |
|
conv_upscale=conv_upscale, |
|
upsample=upsample, |
|
dropout_prob=dropout_prob, |
|
encoder_only=encoder_only, |
|
is3d=True) |
|
|
|
|
|
|