omnipart's picture
init
491eded
# https://github.com/wolny/pytorch-3dunet/blob/master/pytorch3dunet/unet3d/buildingblocks.py
# MIT License
# Copyright (c) 2018 Adrian Wolny
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch.nn as nn
from partfield.model.UNet.buildingblocks import DoubleConv, ResNetBlock, \
create_decoders, create_encoders
def number_of_features_per_level(init_channel_number, num_levels):
return [init_channel_number * 2 ** k for k in range(num_levels)]
class AbstractUNet(nn.Module):
"""
Base class for standard and residual UNet.
Args:
in_channels (int): number of input channels
out_channels (int): number of output segmentation masks;
Note that the of out_channels might correspond to either
different semantic classes or to different binary segmentation mask.
It's up to the user of the class to interpret the out_channels and
use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class)
or BCEWithLogitsLoss (two-class) respectively)
f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number
of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4
final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution,
otherwise apply nn.Softmax. In effect only if `self.training == False`, i.e. during validation/testing
basic_module: basic model for the encoder/decoder (DoubleConv, ResNetBlock, ....)
layer_order (string): determines the order of layers in `SingleConv` module.
E.g. 'crg' stands for GroupNorm3d+Conv3d+ReLU. See `SingleConv` for more info
num_groups (int): number of groups for the GroupNorm
num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int)
default: 4
is_segmentation (bool): if True and the model is in eval mode, Sigmoid/Softmax normalization is applied
after the final convolution; if False (regression problem) the normalization layer is skipped
conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module
pool_kernel_size (int or tuple): the size of the window
conv_padding (int or tuple): add zero-padding added to all three sides of the input
conv_upscale (int): number of the convolution to upscale in encoder if DoubleConv, default: 2
upsample (str): algorithm used for decoder upsampling:
InterpolateUpsampling: 'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'
TransposeConvUpsampling: 'deconv'
No upsampling: None
Default: 'default' (chooses automatically)
dropout_prob (float or tuple): dropout probability, default: 0.1
is3d (bool): if True the model is 3D, otherwise 2D, default: True
"""
def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=4, is_segmentation=False, conv_kernel_size=3, pool_kernel_size=2,
conv_padding=1, conv_upscale=2, upsample='default', dropout_prob=0.1, is3d=True, encoder_only=False):
super(AbstractUNet, self).__init__()
if isinstance(f_maps, int):
f_maps = number_of_features_per_level(f_maps, num_levels=num_levels)
assert isinstance(f_maps, list) or isinstance(f_maps, tuple)
assert len(f_maps) > 1, "Required at least 2 levels in the U-Net"
if 'g' in layer_order:
assert num_groups is not None, "num_groups must be specified if GroupNorm is used"
# create encoder path
self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size,
conv_padding, conv_upscale, dropout_prob,
layer_order, num_groups, pool_kernel_size, is3d)
self.encoder_only = encoder_only
if encoder_only == False:
# create decoder path
self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding,
layer_order, num_groups, upsample, dropout_prob,
is3d)
# in the last layer a 1×1 convolution reduces the number of output channels to the number of labels
if is3d:
self.final_conv = nn.Conv3d(f_maps[1], out_channels, 1)
else:
self.final_conv = nn.Conv2d(f_maps[1], out_channels, 1)
if is_segmentation:
# semantic segmentation problem
if final_sigmoid:
self.final_activation = nn.Sigmoid()
else:
self.final_activation = nn.Softmax(dim=1)
else:
# regression problem
self.final_activation = None
def forward(self, x, return_bottleneck_feat=False):
# encoder part
encoders_features = []
for encoder in self.encoders:
x = encoder(x)
# reverse the encoder outputs to be aligned with the decoder
encoders_features.insert(0, x)
# remove the last encoder's output from the list
# !!remember: it's the 1st in the list
bottleneck_feat = encoders_features[0]
if self.encoder_only:
return bottleneck_feat
else:
encoders_features = encoders_features[1:]
# decoder part
for decoder, encoder_features in zip(self.decoders, encoders_features):
# pass the output from the corresponding encoder and the output
# of the previous decoder
x = decoder(encoder_features, x)
x = self.final_conv(x)
# During training the network outputs logits
if self.final_activation is not None:
x = self.final_activation(x)
if return_bottleneck_feat:
return x, bottleneck_feat
else:
return x
class ResidualUNet3D(AbstractUNet):
"""
Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf.
Uses ResNetBlock as a basic building block, summation joining instead
of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts).
Since the model effectively becomes a residual net, in theory it allows for deeper UNet.
"""
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=(8, 16, 64, 256, 1024), layer_order='gcr',
num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1,
conv_upscale=2, upsample='default', dropout_prob=0.1, encoder_only=False, **kwargs):
super(ResidualUNet3D, self).__init__(in_channels=in_channels,
out_channels=out_channels,
final_sigmoid=final_sigmoid,
basic_module=ResNetBlock,
f_maps=f_maps,
layer_order=layer_order,
num_groups=num_groups,
num_levels=num_levels,
is_segmentation=is_segmentation,
conv_padding=conv_padding,
conv_upscale=conv_upscale,
upsample=upsample,
dropout_prob=dropout_prob,
encoder_only=encoder_only,
is3d=True)