OmniPart / modules /part_synthesis /models /structured_latent_flow.py
omnipart's picture
init
491eded
from typing import *
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
from ..modules.transformer import AbsolutePositionEmbedder
from ..modules.norm import LayerNorm32
from ..modules import sparse as sp
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
from .sparse_structure_flow import TimestepEmbedder
from .sparse_elastic_mixin import SparseTransformerElasticMixin
class SparseResBlock3d(nn.Module):
"""
3D Sparse Residual Block with time embedding conditioning.
This block performs normalization, convolution operations on sparse tensors,
and incorporates time embeddings via adaptive layer normalization.
Supports optional up/downsampling.
"""
def __init__(
self,
channels: int,
emb_channels: int,
out_channels: Optional[int] = None,
downsample: bool = False,
upsample: bool = False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.out_channels = out_channels or channels
self.downsample = downsample
self.upsample = upsample
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
# First normalization and convolution
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
# Second convolution initialized to zero for stable training
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
# Time embedding projection for adaptive layer norm
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
)
# Skip connection with linear projection if channel dimensions change
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
# Optional up/downsampling
self.updown = None
if self.downsample:
self.updown = sp.SparseDownsample(2)
elif self.upsample:
self.updown = sp.SparseUpsample(2)
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
"""Apply up/downsampling if configured"""
if self.updown is not None:
x = self.updown(x)
return x
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
"""
Forward pass of the residual block.
Args:
x: Input sparse tensor
emb: Time embedding tensor
Returns:
Processed sparse tensor
"""
# print(f"number of points in the input: {x.coords.shape[0]}")
# Project embedding to scale and shift factors
emb_out = self.emb_layers(emb).type(x.dtype)
scale, shift = torch.chunk(emb_out, 2, dim=1)
# Apply up/downsampling if needed
x = self._updown(x)
# Main processing path
h = x.replace(self.norm1(x.feats))
h = h.replace(F.silu(h.feats))
h = self.conv1(h)
# Apply adaptive layer norm using scale and shift from time embedding
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
h = h.replace(F.silu(h.feats))
h = self.conv2(h)
# Residual connection
h = h + self.skip_connection(x)
return h
class SLatFlowModel(nn.Module):
"""
Structured Latent Flow Model for 3D generative modeling.
This model combines sparse convolutions with transformer blocks and
supports conditional generation. It uses a U-Net-like architecture with
skip connections and has optional mixed precision support.
"""
def __init__(
self,
resolution: int,
in_channels: int,
model_channels: int,
cond_channels: int,
out_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4,
patch_size: int = 2,
num_io_res_blocks: int = 2,
io_block_channels: List[int] = None,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
use_skip_connection: bool = True,
share_mod: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.model_channels = model_channels
self.cond_channels = cond_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.num_heads = num_heads or model_channels // num_head_channels
self.mlp_ratio = mlp_ratio
self.patch_size = patch_size
self.num_io_res_blocks = num_io_res_blocks
self.io_block_channels = io_block_channels
self.pe_mode = pe_mode
self.use_fp16 = use_fp16
self.use_checkpoint = use_checkpoint
self.use_skip_connection = use_skip_connection
self.share_mod = share_mod
self.qk_rms_norm = qk_rms_norm
self.qk_rms_norm_cross = qk_rms_norm_cross
self.dtype = torch.float16 if use_fp16 else torch.float32
# Validate configurations
if self.io_block_channels is not None:
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
# Time step embedder
self.t_embedder = TimestepEmbedder(model_channels)
# Shared modulation for all transformer blocks if enabled
if share_mod:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(model_channels, 6 * model_channels, bias=True)
)
self.part_max_size = 50
# Positional embedding for transformer blocks
if pe_mode == "ape":
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
self.part_pe = nn.Embedding(self.part_max_size + 1, model_channels) # +1 for overall object
self.part_pe_proj = nn.Linear(model_channels, model_channels)
# Mask embedding
self.dinov2_hidden_size = 1024
self.mask_group_emb_dim = 128
self.mask_group_emb = nn.Embedding(self.part_max_size + 1, self.mask_group_emb_dim) # +1 for background
self.mask_group_emb_proj = nn.Linear(self.mask_group_emb_dim, self.dinov2_hidden_size)
# Input projection layer
self.input_layer = sp.SparseLinear(in_channels, model_channels if io_block_channels is None else io_block_channels[0])
# Input processing blocks (downsampling path)
self.input_blocks = nn.ModuleList([])
# print(f"io_block_channels: {io_block_channels}") # io_block_channels: [128]
# print(f"model_channels: {model_channels}") # model_channels: 1024
if io_block_channels is not None:
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
# Add regular residual blocks at current resolution
self.input_blocks.extend([
SparseResBlock3d(
chs,
model_channels,
out_channels=chs,
)
for _ in range(num_io_res_blocks-1)
])
# Add downsampling block at the end of each resolution level
self.input_blocks.append(
SparseResBlock3d(
chs,
model_channels,
out_channels=next_chs,
downsample=True,
)
)
# Core transformer blocks
self.blocks = nn.ModuleList([
ModulatedSparseTransformerCrossBlock(
model_channels,
cond_channels,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
attn_mode='full',
use_checkpoint=self.use_checkpoint,
use_rope=(pe_mode == "rope"),
share_mod=self.share_mod,
qk_rms_norm=self.qk_rms_norm,
qk_rms_norm_cross=self.qk_rms_norm_cross,
)
for _ in range(num_blocks)
])
# Output processing blocks (upsampling path)
self.out_blocks = nn.ModuleList([])
if io_block_channels is not None:
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
# Add upsampling block at the beginning of each resolution level
self.out_blocks.append(
SparseResBlock3d(
prev_chs * 2 if self.use_skip_connection else prev_chs,
model_channels,
out_channels=chs,
upsample=True,
)
)
# Add regular residual blocks at current resolution
self.out_blocks.extend([
SparseResBlock3d(
chs * 2 if self.use_skip_connection else chs,
model_channels,
out_channels=chs,
)
for _ in range(num_io_res_blocks-1)
])
# Final output projection
self.out_layer = sp.SparseLinear(model_channels if io_block_channels is None else io_block_channels[0], out_channels)
# Initialize model weights
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
# else:
# self.convert_to_fp32()
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16 for mixed precision training.
"""
self.input_blocks.apply(convert_module_to_f16)
self.blocks.apply(convert_module_to_f16)
self.out_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model back to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.blocks.apply(convert_module_to_f32)
self.out_blocks.apply(convert_module_to_f32)
def initialize_weights(self) -> None:
"""
Initialize model weights with specialized initialization for different components.
"""
# Initialize transformer layers with Xavier uniform initialization
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP with normal distribution
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers for stable training
if self.share_mod:
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
else:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers for stable training
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
# part embedding initialization
nn.init.zeros_(self.part_pe_proj.weight)
nn.init.zeros_(self.part_pe_proj.bias)
# Initialize layer positional embeddings
self.part_pe.weight.data.normal_(mean=0.0,std=0.02)
# Initialize group embedding
nn.init.zeros_(self.mask_group_emb_proj.weight)
nn.init.zeros_(self.mask_group_emb_proj.bias)
self.mask_group_emb.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor, **kwargs) -> sp.SparseTensor:
"""
Forward pass of the Structured Latent Flow model.
Args:
x: Input sparse tensor
t: Timestep embedding inputs
cond: Conditional input for cross-attention
**kwargs: Additional arguments, including part_layouts if available
Returns:
Output sparse tensor
"""
# x = x.type(self.dtype)
# t = t.type(self.dtype)
# cond = cond.type(self.dtype)
input_dtype = x.dtype
masks = kwargs['masks'] # [b, h, w]
# Ensure masks are always long type regardless of source
masks = masks.long() # Explicitly convert to long type for embedding
masks = rearrange(masks, 'b h w -> b (h w)') # [b, h*w]
masks_emb = self.mask_group_emb(masks) # [b, h*w, 128]
masks_emb = self.mask_group_emb_proj(masks_emb) # [b, h*w, 1024]
group_emb = torch.zeros((cond.shape[0], cond.shape[1], masks_emb.shape[2]), device=cond.device, dtype=cond.dtype)
group_emb[:, :masks_emb.shape[1], :] = masks_emb
cond = cond + group_emb
cond = cond.type(self.dtype)
# Store original batch IDs for later restoration
original_batch_ids = x.coords[:, 0].clone()
# Create new batch IDs to represent individual parts (instead of batches)
new_batch_ids = torch.zeros_like(original_batch_ids)
# Assign unique IDs to each part across all batches
part_layouts = kwargs['part_layouts']
part_id = 0
len_before = 0
batch_last_partid = []
for batch_idx, part_layout in enumerate(part_layouts):
for layout_idx, layout in enumerate(part_layout):
adjusted_layout = slice(layout.start + len_before, layout.stop + len_before, layout.step)
new_batch_ids[adjusted_layout] = part_id
part_id += 1
batch_last_partid.append(part_id)
len_before += part_layout[-1].stop
# Project input to model dimensions and convert to target dtype
x = self.input_layer(x).type(self.dtype)
x = sp.SparseTensor(
feats = x.feats,
coords = torch.cat([new_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1),)
# Process timestep embedding and condition input
t_emb = self.t_embedder(t)
if self.share_mod:
t_emb = self.adaLN_modulation(t_emb)
t_emb = t_emb.type(self.dtype)
t_emb_updown = []
for batch_idx, part_layout in enumerate(part_layouts):
t_emb_updown_batch = t_emb[batch_idx:batch_idx+1].repeat(len(part_layout), 1)
t_emb_updown.append(t_emb_updown_batch)
t_emb_updown = torch.cat(t_emb_updown, dim=0).type(self.dtype)
# Store features for skip connections
skips = []
# Downsampling path through input blocks
for block in self.input_blocks:
x = block(x, t_emb_updown)
skips.append(x.feats)
# Store part-wise batch IDs before transformer processing
part_wise_batch_ids = x.coords[:, 0].clone()
# Convert to batch-wise IDs for transformer blocks
new_transformer_batch_ids = torch.zeros_like(part_wise_batch_ids)
part_ids_in_each_object = torch.zeros_like(part_wise_batch_ids)
start_reform = 0
last_part_id = 0
for part_id in batch_last_partid:
mask = (part_wise_batch_ids >= last_part_id) & (part_wise_batch_ids < part_id)
new_transformer_batch_ids[mask] = start_reform
part_ids_in_each_object[mask] = part_wise_batch_ids[mask] - last_part_id
last_part_id = part_id
start_reform += 1
# Update coordinates with batch-wise IDs for transformer processing
h = sp.SparseTensor(
feats = x.feats,
coords = torch.cat([new_transformer_batch_ids.view(-1, 1), x.coords[:, 1:]], dim=1))
# Add positional embeddings for transformer blocks
if self.pe_mode == "ape":
# Add absolute positional embeddings to spatial coordinates
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
# Part-with PE; overall is 0
part_pe = self.part_pe(part_ids_in_each_object)
part_pe = self.part_pe_proj(part_pe)
h = h + part_pe.type(self.dtype)
else:
raise NotImplementedError
# Process with transformer blocks
for block in self.blocks:
h = block(h, t_emb, cond)
h = x.replace(feats=h.feats, coords=torch.cat([part_wise_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1))
# Upsampling path with output blocks and skip connections
for block, skip in zip(self.out_blocks, reversed(skips)):
if self.use_skip_connection:
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb_updown)
else:
h = block(h, t_emb_updown)
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
h = self.out_layer(h.type(input_dtype))
h = sp.SparseTensor(
feats = h.feats,
coords = torch.cat([original_batch_ids.view(-1, 1), h.coords[:, 1:]], dim=1))
return h
class ElasticSLatFlowModel(SparseTransformerElasticMixin, SLatFlowModel):
"""
Structured Latent Flow Model with elastic memory management.
This class extends SLatFlowModel with memory-efficient operations,
allowing training with limited VRAM by dynamically managing memory
allocation for sparse tensors.
"""
pass