|
""" |
|
Base Sparse Transformer Implementation for TRELLIS Framework |
|
|
|
This file implements the base architecture for sparse transformers used in structured latent variable models. |
|
It provides a configurable foundation with multiple attention mechanisms (full, windowed, shifted window) |
|
and supports different positional encoding strategies. The sparse implementation allows for efficient |
|
processing of data with varying density patterns. |
|
|
|
The main class SparseTransformerBase serves as the foundation for encoder and decoder implementations |
|
in the structured latent VAE models. |
|
""" |
|
|
|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
from ...modules.utils import convert_module_to_f16, convert_module_to_f32 |
|
from ...modules import sparse as sp |
|
from ...modules.transformer import AbsolutePositionEmbedder |
|
from ...modules.sparse.transformer import SparseTransformerBlock |
|
|
|
|
|
def block_attn_config(self): |
|
""" |
|
Return the attention configuration for each transformer block. |
|
|
|
Generates configurations for each block based on the specified attention mode: |
|
- shift_window: Uses serialized attention with shifting window patterns |
|
- shift_sequence: Uses serialized attention with sequence shifts |
|
- shift_order: Uses serialized attention with different serialization orders |
|
- full: Uses standard full attention (non-sparse) |
|
- swin: Uses Swin Transformer-style windowed attention |
|
|
|
Yields: |
|
Tuple containing attention mode and its parameters |
|
""" |
|
for i in range(self.num_blocks): |
|
if self.attn_mode == "shift_window": |
|
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER |
|
elif self.attn_mode == "shift_sequence": |
|
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER |
|
elif self.attn_mode == "shift_order": |
|
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4] |
|
elif self.attn_mode == "full": |
|
yield "full", None, None, None, None |
|
elif self.attn_mode == "swin": |
|
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None |
|
|
|
|
|
class SparseTransformerBase(nn.Module): |
|
""" |
|
Sparse Transformer without output layers. |
|
Serve as the base class for encoder and decoder. |
|
|
|
Implements a transformer architecture that can work with sparse data structures, |
|
supporting various attention mechanisms and positional encodings. |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
model_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4.0, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", |
|
window_size: Optional[int] = None, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
qk_rms_norm: bool = False, |
|
): |
|
""" |
|
Initialize the sparse transformer base model. |
|
|
|
Args: |
|
in_channels: Number of input channels |
|
model_channels: Hidden dimension size |
|
num_blocks: Number of transformer blocks |
|
num_heads: Number of attention heads (calculated from head_channels if None) |
|
num_head_channels: Number of channels per attention head |
|
mlp_ratio: Ratio for MLP hidden dimension |
|
attn_mode: Attention mechanism type |
|
window_size: Size of attention window for windowed modes |
|
pe_mode: Positional encoding mode (absolute or rotary) |
|
use_fp16: Whether to use half precision |
|
use_checkpoint: Whether to use gradient checkpointing |
|
qk_rms_norm: Whether to use RMS normalization for query and key |
|
""" |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.num_blocks = num_blocks |
|
self.window_size = window_size |
|
self.num_heads = num_heads or model_channels // num_head_channels |
|
self.mlp_ratio = mlp_ratio |
|
self.attn_mode = attn_mode |
|
self.pe_mode = pe_mode |
|
self.use_fp16 = use_fp16 |
|
self.use_checkpoint = use_checkpoint |
|
self.qk_rms_norm = qk_rms_norm |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
|
|
if pe_mode == "ape": |
|
self.pos_embedder = AbsolutePositionEmbedder(model_channels) |
|
|
|
|
|
self.input_layer = sp.SparseLinear(in_channels, model_channels) |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SparseTransformerBlock( |
|
model_channels, |
|
num_heads=self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
shift_sequence=shift_sequence, |
|
shift_window=shift_window, |
|
serialize_mode=serialize_mode, |
|
use_checkpoint=self.use_checkpoint, |
|
use_rope=(pe_mode == "rope"), |
|
qk_rms_norm=self.qk_rms_norm, |
|
) |
|
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self) |
|
]) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16 precision. |
|
Used for mixed precision training. |
|
""" |
|
self.blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model back to float32 precision. |
|
Used after mixed precision training or inference. |
|
""" |
|
self.blocks.apply(convert_module_to_f32) |
|
|
|
def initialize_weights(self) -> None: |
|
""" |
|
Initialize the weights of the model using Xavier uniform initialization. |
|
This helps with training stability and convergence. |
|
""" |
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor: |
|
""" |
|
Forward pass through the sparse transformer. |
|
|
|
Args: |
|
x: Input sparse tensor |
|
|
|
Returns: |
|
Processed sparse tensor after passing through all transformer blocks |
|
""" |
|
|
|
h = self.input_layer(x) |
|
|
|
|
|
if self.pe_mode == "ape": |
|
h = h + self.pos_embedder(x.coords[:, 1:]) |
|
|
|
|
|
h = h.type(self.dtype) |
|
|
|
|
|
for block in self.blocks: |
|
h = block(h) |
|
|
|
return h |
|
|