omnipart's picture
init
491eded
"""
This file implements radiance field decoders for Structured Latent VAE models.
The main class SLatRadianceFieldDecoder is a sparse transformer-based decoder that
transforms latent codes into sparse representations of 3D scenes (Strivec representation).
It also includes an elastic memory version (ElasticSLatRadianceFieldDecoder) for low VRAM training.
"""
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ...modules import sparse as sp
from .base import SparseTransformerBase
from ...representations import Strivec
from ..sparse_elastic_mixin import SparseTransformerElasticMixin
class SLatRadianceFieldDecoder(SparseTransformerBase):
"""
A sparse transformer-based decoder for converting latent codes to radiance field representations.
This decoder processes sparse tensors through transformer blocks and outputs parameters for Strivec representation.
"""
def __init__(
self,
resolution: int, # Resolution of the output 3D grid
model_channels: int, # Number of channels in the model's hidden layers
latent_channels: int, # Number of channels in the latent code
num_blocks: int, # Number of transformer blocks
num_heads: Optional[int] = None, # Number of attention heads
num_head_channels: Optional[int] = 64, # Channels per attention head
mlp_ratio: float = 4, # Ratio for MLP hidden dimension
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", # Attention mode
window_size: int = 8, # Size of local attention window
pe_mode: Literal["ape", "rope"] = "ape", # Positional encoding mode
use_fp16: bool = False, # Whether to use half precision
use_checkpoint: bool = False, # Whether to use gradient checkpointing
qk_rms_norm: bool = False, # Whether to normalize query and key
representation_config: dict = None, # Configuration for output representation
):
# Initialize the base sparse transformer
super().__init__(
in_channels=latent_channels,
model_channels=model_channels,
num_blocks=num_blocks,
num_heads=num_heads,
num_head_channels=num_head_channels,
mlp_ratio=mlp_ratio,
attn_mode=attn_mode,
window_size=window_size,
pe_mode=pe_mode,
use_fp16=use_fp16,
use_checkpoint=use_checkpoint,
qk_rms_norm=qk_rms_norm,
)
self.resolution = resolution
self.rep_config = representation_config
self._calc_layout() # Calculate the output layout
# Final layer to project features to the output representation
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
def initialize_weights(self) -> None:
"""
Initialize the weights of the model.
Zero-initializes the output layer for better training stability.
"""
super().initialize_weights()
# Zero-out output layers for better training stability
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
def _calc_layout(self) -> None:
"""
Calculate the output tensor layout for the Strivec representation.
Defines the shapes and sizes of different components and their positions in the output tensor.
"""
self.layout = {
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']},
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']},
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3},
}
# Calculate the range (start, end) indices for each component in the output tensor
start = 0
for k, v in self.layout.items():
v['range'] = (start, start + v['size'])
start += v['size']
self.out_channels = start
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
"""
Convert a batch of network outputs to 3D representations.
Args:
x: The [N x * x C] sparse tensor output by the network.
Returns:
list of Strivec representations, one per batch item
"""
ret = []
for i in range(x.shape[0]):
# Create a new Strivec representation
representation = Strivec(
sh_degree=0,
resolution=self.resolution,
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], # Axis-aligned bounding box
rank=self.rep_config['rank'],
dim=self.rep_config['dim'],
device='cuda',
)
representation.density_shift = 0.0
# Set position from sparse coordinates (normalized to [0,1])
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
# Set depth (octree level) based on resolution
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda')
# Extract each component from the output features according to the layout
for k, v in self.layout.items():
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']))
# Add 1 to trivec for stability (prevent zero vectors)
representation.trivec = representation.trivec + 1
ret.append(representation)
return ret
def forward(self, x: sp.SparseTensor) -> List[Strivec]:
"""
Forward pass through the decoder.
Args:
x: Input sparse tensor containing latent codes
Returns:
List of Strivec representations
"""
# Pass through transformer backbone
h = super().forward(x)
h = h.type(x.dtype)
# Layer normalization on feature dimension
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
# Final projection to output features
h = self.out_layer(h)
# Convert network output to Strivec representations
return self.to_representation(h)
class ElasticSLatRadianceFieldDecoder(SparseTransformerElasticMixin, SLatRadianceFieldDecoder):
"""
Slat VAE Radiance Field Decoder with elastic memory management.
Used for training with low VRAM by dynamically managing memory allocation
and performing operations in chunks when needed.
"""
pass