|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import math |
|
from easydict import EasyDict as edict |
|
import numpy as np |
|
from ..representations.gaussian import Gaussian |
|
from .sh_utils import eval_sh |
|
import torch.nn.functional as F |
|
from easydict import EasyDict as edict |
|
|
|
|
|
def intrinsics_to_projection( |
|
intrinsics: torch.Tensor, |
|
near: float, |
|
far: float, |
|
) -> torch.Tensor: |
|
""" |
|
Convert OpenCV-style camera intrinsics matrix to OpenGL perspective projection matrix. |
|
|
|
This function transforms a standard 3x3 camera intrinsics matrix into a 4x4 perspective |
|
projection matrix compatible with OpenGL rendering pipeline. The resulting matrix |
|
properly handles the coordinate system differences between computer vision and |
|
computer graphics conventions. |
|
|
|
Args: |
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix containing focal lengths |
|
and principal point coordinates |
|
near (float): Distance to the near clipping plane (must be positive) |
|
far (float): Distance to the far clipping plane (must be greater than near) |
|
|
|
Returns: |
|
torch.Tensor: [4, 4] OpenGL perspective projection matrix for rendering |
|
""" |
|
|
|
|
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1] |
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2] |
|
|
|
|
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) |
|
|
|
|
|
ret[0, 0] = 2 * fx |
|
ret[1, 1] = 2 * fy |
|
ret[0, 2] = 2 * cx - 1 |
|
ret[1, 2] = - 2 * cy + 1 |
|
ret[2, 2] = far / (far - near) |
|
ret[2, 3] = near * far / (near - far) |
|
ret[3, 2] = 1. |
|
|
|
return ret |
|
|
|
def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None): |
|
""" |
|
Render the scene using 3D Gaussians. |
|
|
|
This function performs the rasterization of 3D Gaussian points into a 2D image from a given viewpoint. |
|
|
|
Args: |
|
viewpoint_camera: Camera parameters including position, view transform, and projection |
|
pc (Gaussian): Point cloud represented as 3D Gaussians |
|
pipe: Pipeline configuration parameters |
|
bg_color (torch.Tensor): Background color tensor (must be on GPU) |
|
scaling_modifier (float): Scale modifier for the Gaussian splats |
|
override_color (torch.Tensor, optional): Custom colors to override computed SH-based colors |
|
|
|
Returns: |
|
edict: Dictionary containing rendered image, viewspace points, visibility filter, and radii information |
|
""" |
|
|
|
|
|
if 'GaussianRasterizer' not in globals(): |
|
from diff_gaussian_rasterization import GaussianRasterizer, GaussianRasterizationSettings |
|
|
|
|
|
|
|
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 |
|
try: |
|
screenspace_points.retain_grad() |
|
except: |
|
pass |
|
|
|
|
|
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) |
|
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) |
|
|
|
|
|
kernel_size = pipe.kernel_size |
|
|
|
|
|
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), |
|
dtype=torch.float32, device="cuda") |
|
|
|
|
|
raster_settings = GaussianRasterizationSettings( |
|
image_height=int(viewpoint_camera.image_height), |
|
image_width=int(viewpoint_camera.image_width), |
|
tanfovx=tanfovx, |
|
tanfovy=tanfovy, |
|
kernel_size=kernel_size, |
|
subpixel_offset=subpixel_offset, |
|
bg=bg_color, |
|
scale_modifier=scaling_modifier, |
|
viewmatrix=viewpoint_camera.world_view_transform, |
|
projmatrix=viewpoint_camera.full_proj_transform, |
|
sh_degree=pc.active_sh_degree, |
|
campos=viewpoint_camera.camera_center, |
|
prefiltered=False, |
|
debug=pipe.debug |
|
) |
|
|
|
|
|
rasterizer = GaussianRasterizer(raster_settings=raster_settings) |
|
|
|
|
|
means3D = pc.get_xyz |
|
means2D = screenspace_points |
|
opacity = pc.get_opacity |
|
|
|
|
|
|
|
scales = None |
|
rotations = None |
|
cov3D_precomp = None |
|
if pipe.compute_cov3D_python: |
|
|
|
cov3D_precomp = pc.get_covariance(scaling_modifier) |
|
else: |
|
|
|
scales = pc.get_scaling |
|
rotations = pc.get_rotation |
|
|
|
|
|
|
|
shs = None |
|
colors_precomp = None |
|
if override_color is None: |
|
if pipe.convert_SHs_python: |
|
|
|
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2) |
|
|
|
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1)) |
|
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) |
|
|
|
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized) |
|
|
|
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) |
|
else: |
|
|
|
shs = pc.get_features |
|
else: |
|
|
|
colors_precomp = override_color |
|
|
|
|
|
|
|
rendered_image, radii = rasterizer( |
|
means3D = means3D, |
|
means2D = means2D, |
|
shs = shs, |
|
colors_precomp = colors_precomp, |
|
opacities = opacity, |
|
scales = scales, |
|
rotations = rotations, |
|
cov3D_precomp = cov3D_precomp |
|
) |
|
|
|
|
|
|
|
return edict({"render": rendered_image, |
|
"viewspace_points": screenspace_points, |
|
"visibility_filter" : radii > 0, |
|
"radii": radii}) |
|
|
|
class GaussianRenderer: |
|
""" |
|
A renderer for Gaussian Splatting that converts 3D Gaussian primitives into 2D images. |
|
|
|
This renderer projects 3D Gaussian splats onto a 2D image plane using the provided |
|
camera parameters, handling the rasterization process through an optimized backend. |
|
|
|
Args: |
|
rendering_options (dict): Configuration options for rendering including resolution, |
|
depth range, background color, and supersampling level. |
|
""" |
|
|
|
def __init__(self, rendering_options={}) -> None: |
|
|
|
self.pipe = edict({ |
|
"kernel_size": 0.1, |
|
"convert_SHs_python": False, |
|
"compute_cov3D_python": False, |
|
"scale_modifier": 1.0, |
|
"debug": False |
|
}) |
|
|
|
|
|
self.rendering_options = edict({ |
|
"resolution": None, |
|
"near": None, |
|
"far": None, |
|
"ssaa": 1, |
|
"bg_color": 'random', |
|
}) |
|
|
|
|
|
self.rendering_options.update(rendering_options) |
|
|
|
|
|
self.bg_color = None |
|
|
|
def render( |
|
self, |
|
gausssian: Gaussian, |
|
extrinsics: torch.Tensor, |
|
intrinsics: torch.Tensor, |
|
colors_overwrite: torch.Tensor = None |
|
) -> edict: |
|
""" |
|
Render the 3D Gaussian representation from a given camera viewpoint. |
|
|
|
This method projects the 3D Gaussians onto a 2D image plane using the provided camera parameters, |
|
handling the full rendering pipeline including projection, rasterization, and optional supersampling. |
|
|
|
Args: |
|
gaussian: The Gaussian representation containing positions, features, and other attributes |
|
extrinsics (torch.Tensor): (4, 4) camera extrinsics matrix defining camera position and orientation |
|
intrinsics (torch.Tensor): (3, 3) camera intrinsics matrix with focal lengths and principal point |
|
colors_overwrite (torch.Tensor): Optional (N, 3) tensor to override Gaussian colors |
|
|
|
Returns: |
|
edict containing: |
|
color (torch.Tensor): (3, H, W) rendered color image |
|
""" |
|
|
|
resolution = self.rendering_options["resolution"] |
|
near = self.rendering_options["near"] |
|
far = self.rendering_options["far"] |
|
ssaa = self.rendering_options["ssaa"] |
|
|
|
|
|
if self.rendering_options["bg_color"] == 'random': |
|
|
|
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda") |
|
if np.random.rand() < 0.5: |
|
self.bg_color += 1 |
|
else: |
|
|
|
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda") |
|
|
|
|
|
view = extrinsics |
|
|
|
|
|
perspective = intrinsics_to_projection(intrinsics, near, far) |
|
|
|
|
|
camera = torch.inverse(view)[:3, 3] |
|
|
|
|
|
focalx = intrinsics[0, 0] |
|
focaly = intrinsics[1, 1] |
|
fovx = 2 * torch.atan(0.5 / focalx) |
|
fovy = 2 * torch.atan(0.5 / focaly) |
|
|
|
|
|
camera_dict = edict({ |
|
"image_height": resolution * ssaa, |
|
"image_width": resolution * ssaa, |
|
"FoVx": fovx, |
|
"FoVy": fovy, |
|
"znear": near, |
|
"zfar": far, |
|
"world_view_transform": view.T.contiguous(), |
|
"projection_matrix": perspective.T.contiguous(), |
|
"full_proj_transform": (perspective @ view).T.contiguous(), |
|
"camera_center": camera |
|
}) |
|
|
|
|
|
render_ret = render(camera_dict, gausssian, self.pipe, self.bg_color, |
|
override_color=colors_overwrite, scaling_modifier=self.pipe.scale_modifier) |
|
|
|
|
|
if ssaa > 1: |
|
|
|
render_ret.render = F.interpolate(render_ret.render[None], |
|
size=(resolution, resolution), |
|
mode='bilinear', |
|
align_corners=False, |
|
antialias=True).squeeze() |
|
|
|
|
|
ret = edict({ |
|
'color': render_ret['render'] |
|
}) |
|
return ret |
|
|