result_name: partfield_features/correspondence_demo continue_ckpt: model/model.ckpt triplane_channels_low: 128 triplane_channels_high: 512 triplane_resolution: 128 vertex_feature: True n_point_per_face: 1000 n_sample_each: 10000 is_pc: True remesh_demo: False correspondence_demo: True preprocess_mesh: True dataset: type: "Mix" data_path: data/DenseCorr3D train_batch_size: 1 val_batch_size: 1 train_num_workers: 8 all_files: # pairs of example to run correspondence - animals/071b8_toy_animals_017/simple_mesh.obj - animals/bdfd0_toy_animals_016/simple_mesh.obj - animals/2d6b3_toy_animals_009/simple_mesh.obj - animals/96615_toy_animals_018/simple_mesh.obj - chairs/063d1_chair_006/simple_mesh.obj - chairs/bea57_chair_012/simple_mesh.obj - chairs/fe0fe_chair_004/simple_mesh.obj - chairs/288dc_chair_011/simple_mesh.obj # consider decimating animals/../color_mesh.obj yourself for better mesh topology than the provided simple_mesh.obj # (e.g. <50k vertices for functional map efficiency). loss: triplet: 1.0 use_2d_feat: False pvcnn: point_encoder_type: 'pvcnn' z_triplane_channels: 256 z_triplane_resolution: 128