# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. """Miscellaneous utility classes and functions.""" from collections import namedtuple import time import ctypes import fnmatch import importlib import inspect import numpy as np import json import os import shutil import sys import types import io import pickle import re # import requests import html import hashlib import glob import tempfile import urllib import urllib.request import uuid import boto3 import threading from contextlib import ContextDecorator from contextlib import contextmanager, nullcontext from distutils.util import strtobool from typing import Any, List, Tuple, Union import importlib from loguru import logger # import wandb import torch import psutil import subprocess import random import string import pdb # Util classes # ------------------------------------------------------------------------------------------ class EasyDict(dict): """Convenience class that behaves like a dict but allows access with the attribute syntax.""" def __getattr__(self, name: str) -> Any: try: return self[name] except KeyError: raise AttributeError(name) def __setattr__(self, name: str, value: Any) -> None: self[name] = value def __delattr__(self, name: str) -> None: del self[name] class Logger(object): """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file.""" def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True): self.file = None if file_name is not None: self.file = open(file_name, file_mode) self.should_flush = should_flush self.stdout = sys.stdout self.stderr = sys.stderr sys.stdout = self sys.stderr = self def __enter__(self) -> "Logger": return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: self.close() def write(self, text: Union[str, bytes]) -> None: """Write text to stdout (and a file) and optionally flush.""" if isinstance(text, bytes): text = text.decode() if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash return if self.file is not None: self.file.write(text) self.stdout.write(text) if self.should_flush: self.flush() def flush(self) -> None: """Flush written text to both stdout and a file, if open.""" if self.file is not None: self.file.flush() self.stdout.flush() def close(self) -> None: """Flush, close possible files, and remove stdout/stderr mirroring.""" self.flush() # if using multiple loggers, prevent closing in wrong order if sys.stdout is self: sys.stdout = self.stdout if sys.stderr is self: sys.stderr = self.stderr if self.file is not None: self.file.close() self.file = None # Cache directories # ------------------------------------------------------------------------------------------ _dnnlib_cache_dir = None def set_cache_dir(path: str) -> None: global _dnnlib_cache_dir _dnnlib_cache_dir = path def make_cache_dir_path(*paths: str) -> str: if _dnnlib_cache_dir is not None: return os.path.join(_dnnlib_cache_dir, *paths) if 'DNNLIB_CACHE_DIR' in os.environ: return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths) if 'HOME' in os.environ: return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths) if 'USERPROFILE' in os.environ: return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths) return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths) # Small util functions # ------------------------------------------------------------------------------------------ def format_time(seconds: Union[int, float]) -> str: """Convert the seconds to human readable string with days, hours, minutes and seconds.""" s = int(np.rint(seconds)) if s < 60: return "{0}s".format(s) elif s < 60 * 60: return "{0}m {1:02}s".format(s // 60, s % 60) elif s < 24 * 60 * 60: return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60) else: return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60) def format_time_brief(seconds: Union[int, float]) -> str: """Convert the seconds to human readable string with days, hours, minutes and seconds.""" s = int(np.rint(seconds)) if s < 60: return "{0}s".format(s) elif s < 60 * 60: return "{0}m {1:02}s".format(s // 60, s % 60) elif s < 24 * 60 * 60: return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60) else: return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24) def ask_yes_no(question: str) -> bool: """Ask the user the question until the user inputs a valid answer.""" while True: try: print("{0} [y/n]".format(question)) return strtobool(input().lower()) except ValueError: pass def tuple_product(t: Tuple) -> Any: """Calculate the product of the tuple elements.""" result = 1 for v in t: result *= v return result _str_to_ctype = { "uint8": ctypes.c_ubyte, "uint16": ctypes.c_uint16, "uint32": ctypes.c_uint32, "uint64": ctypes.c_uint64, "int8": ctypes.c_byte, "int16": ctypes.c_int16, "int32": ctypes.c_int32, "int64": ctypes.c_int64, "float32": ctypes.c_float, "float64": ctypes.c_double } def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]: """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes.""" type_str = None if isinstance(type_obj, str): type_str = type_obj elif hasattr(type_obj, "__name__"): type_str = type_obj.__name__ elif hasattr(type_obj, "name"): type_str = type_obj.name else: raise RuntimeError("Cannot infer type name from input") assert type_str in _str_to_ctype.keys() my_dtype = np.dtype(type_str) my_ctype = _str_to_ctype[type_str] assert my_dtype.itemsize == ctypes.sizeof(my_ctype) return my_dtype, my_ctype def is_pickleable(obj: Any) -> bool: try: with io.BytesIO() as stream: pickle.dump(obj, stream) return True except: return False # Functionality to import modules/objects by name, and call functions by name # ------------------------------------------------------------------------------------------ def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]: """Searches for the underlying module behind the name to some python object. Returns the module and the object name (original name with module part removed).""" # allow convenience shorthands, substitute them by full names obj_name = re.sub("^np.", "numpy.", obj_name) obj_name = re.sub("^tf.", "tensorflow.", obj_name) # list alternatives for (module_name, local_obj_name) parts = obj_name.split(".") name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)] # try each alternative in turn for module_name, local_obj_name in name_pairs: try: module = importlib.import_module(module_name) # may raise ImportError get_obj_from_module(module, local_obj_name) # may raise AttributeError return module, local_obj_name except: pass # maybe some of the modules themselves contain errors? for module_name, _local_obj_name in name_pairs: try: importlib.import_module(module_name) # may raise ImportError except ImportError: if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"): raise # maybe the requested attribute is missing? for module_name, local_obj_name in name_pairs: try: module = importlib.import_module(module_name) # may raise ImportError get_obj_from_module(module, local_obj_name) # may raise AttributeError except ImportError: pass # we are out of luck, but we have no idea why raise ImportError(obj_name) def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any: """Traverses the object name and returns the last (rightmost) python object.""" if obj_name == '': return module obj = module for part in obj_name.split("."): obj = getattr(obj, part) return obj def get_obj_by_name(name: str) -> Any: """Finds the python object with the given name.""" module, obj_name = get_module_from_obj_name(name) return get_obj_from_module(module, obj_name) def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any: """Finds the python object with the given name and calls it as a function.""" assert func_name is not None func_obj = get_obj_by_name(func_name) assert callable(func_obj) return func_obj(*args, **kwargs) def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any: """Finds the python class with the given name and constructs it with the given arguments.""" return call_func_by_name(*args, func_name=class_name, **kwargs) def get_module_dir_by_obj_name(obj_name: str) -> str: """Get the directory path of the module containing the given object name.""" module, _ = get_module_from_obj_name(obj_name) return os.path.dirname(inspect.getfile(module)) def is_top_level_function(obj: Any) -> bool: """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'.""" return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__ def get_top_level_function_name(obj: Any) -> str: """Return the fully-qualified name of a top-level function.""" assert is_top_level_function(obj) module = obj.__module__ if module == '__main__': module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0] return module + "." + obj.__name__ # File system helpers # ------------------------------------------------------------------------------------------ def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]: """List all files recursively in a given directory while ignoring given file and directory names. Returns list of tuples containing both absolute and relative paths.""" assert os.path.isdir(dir_path) base_name = os.path.basename(os.path.normpath(dir_path)) if ignores is None: ignores = [] result = [] for root, dirs, files in os.walk(dir_path, topdown=True): for ignore_ in ignores: dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)] # dirs need to be edited in-place for d in dirs_to_remove: dirs.remove(d) files = [f for f in files if not fnmatch.fnmatch(f, ignore_)] absolute_paths = [os.path.join(root, f) for f in files] relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths] if add_base_to_relative: relative_paths = [os.path.join(base_name, p) for p in relative_paths] assert len(absolute_paths) == len(relative_paths) result += zip(absolute_paths, relative_paths) return result def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None: """Takes in a list of tuples of (src, dst) paths and copies files. Will create all necessary directories.""" for file in files: target_dir_name = os.path.dirname(file[1]) # will create all intermediate-level directories if not os.path.exists(target_dir_name): os.makedirs(target_dir_name) shutil.copyfile(file[0], file[1]) # URL helpers # ------------------------------------------------------------------------------------------ def is_url(obj: Any, allow_file_urls: bool = False) -> bool: """Determine whether the given object is a valid URL string.""" if not isinstance(obj, str) or not "://" in obj: return False if allow_file_urls and obj.startswith('file://'): return True try: res = requests.compat.urlparse(obj) if not res.scheme or not res.netloc or not "." in res.netloc: return False res = requests.compat.urlparse(requests.compat.urljoin(obj, "/")) if not res.scheme or not res.netloc or not "." in res.netloc: return False except: return False return True def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any: """Download the given URL and return a binary-mode file object to access the data.""" assert num_attempts >= 1 assert not (return_filename and (not cache)) # Doesn't look like an URL scheme so interpret it as a local filename. if not re.match('^[a-z]+://', url): return url if return_filename else open(url, "rb") # Handle file URLs. This code handles unusual file:// patterns that # arise on Windows: # # file:///c:/foo.txt # # which would translate to a local '/c:/foo.txt' filename that's # invalid. Drop the forward slash for such pathnames. # # If you touch this code path, you should test it on both Linux and # Windows. # # Some internet resources suggest using urllib.request.url2pathname() but # but that converts forward slashes to backslashes and this causes # its own set of problems. if url.startswith('file://'): filename = urllib.parse.urlparse(url).path if re.match(r'^/[a-zA-Z]:', filename): filename = filename[1:] return filename if return_filename else open(filename, "rb") assert is_url(url) # Lookup from cache. if cache_dir is None: cache_dir = make_cache_dir_path('downloads') url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() if cache: cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*")) if len(cache_files) == 1: filename = cache_files[0] return filename if return_filename else open(filename, "rb") # Download. url_name = None url_data = None with requests.Session() as session: if verbose: print("Downloading %s ..." % url, end="", flush=True) for attempts_left in reversed(range(num_attempts)): try: with session.get(url) as res: res.raise_for_status() if len(res.content) == 0: raise IOError("No data received") if len(res.content) < 8192: content_str = res.content.decode("utf-8") if "download_warning" in res.headers.get("Set-Cookie", ""): links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link] if len(links) == 1: url = requests.compat.urljoin(url, links[0]) raise IOError("Google Drive virus checker nag") if "Google Drive - Quota exceeded" in content_str: raise IOError("Google Drive download quota exceeded -- please try again later") match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", "")) url_name = match[1] if match else url url_data = res.content if verbose: print(" done") break except KeyboardInterrupt: raise except: if not attempts_left: if verbose: print(" failed") raise if verbose: print(".", end="", flush=True) # Save to cache. if cache: safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name) cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name) temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name) os.makedirs(cache_dir, exist_ok=True) with open(temp_file, "wb") as f: f.write(url_data) os.replace(temp_file, cache_file) # atomic if return_filename: return cache_file # Return data as file object. assert not return_filename return io.BytesIO(url_data) # ------------------------------------------------------------------------------------------ # util function modified from https://github.com/nv-tlabs/LION/blob/0467d2199076e95a7e88bafd99dcd7d48a04b4a7/utils/model_helper.py def import_class(model_str): from torch_utils.dist_utils import is_rank0 if is_rank0(): logger.info('import: {}', model_str) p, m = model_str.rsplit('.', 1) mod = importlib.import_module(p) Model = getattr(mod, m) return Model class ScopedTorchProfiler(ContextDecorator): """ Marks ranges for both nvtx profiling (with nsys) and torch autograd profiler """ __global_counts = {} enabled=False def __init__(self, unique_name: str): """ Names must be unique! """ ScopedTorchProfiler.__global_counts[unique_name] = 0 self._name = unique_name self._autograd_scope = torch.profiler.record_function(unique_name) def __enter__(self): if ScopedTorchProfiler.enabled: torch.cuda.nvtx.range_push(self._name) self._autograd_scope.__enter__() def __exit__(self, exc_type, exc_value, traceback): self._autograd_scope.__exit__(exc_type, exc_value, traceback) if ScopedTorchProfiler.enabled: torch.cuda.nvtx.range_pop() class TimingsMonitor(): CUDATimer = namedtuple('CUDATimer', ['start', 'end']) def __init__(self, device, enabled=True, timing_names:List[str]=[], cuda_timing_names:List[str]=[]): """ Usage: tmonitor = TimingsMonitor(device) for i in range(n_iter): # Record arbitrary scopes with tmonitor.timing_scope('regular_scope_name'): ... with tmonitor.cuda_timing_scope('nested_scope_name'): ... with tmonitor.cuda_timing_scope('cuda_scope_name'): ... tmonitor.record_timing('duration_name', end_time - start_time) # Gather timings tmonitor.record_all_cuda_timings() tmonitor.update_all_averages() averages = tmonitor.get_average_timings() all_timings = tmonitor.get_timings() Two types of timers, standard report timing and cuda timings. Cuda timing supports scoped context manager cuda_event_scope. Args: device: device to time on (needed for cuda timers) # enabled: HACK to only report timings from rank 0, set enabled=(global_rank==0) timing_names: timings to report optional (will auto add new names) cuda_timing_names: cuda periods to time optional (will auto add new names) """ self.enabled=enabled self.device = device # Normal timing # self.all_timings_dict = {k:None for k in timing_names + cuda_timing_names} self.all_timings_dict = {} self.avg_meter_dict = {} # Cuda event timers to measure time spent on pushing data to gpu and on training step self.cuda_event_timers = {} for k in timing_names: self.add_new_timing(k) for k in cuda_timing_names: self.add_new_cuda_timing(k) # Running averages # self.avg_meter_dict = {k:AverageMeter() for k in self.all_timings_dict} def add_new_timing(self, name): self.avg_meter_dict[name] = AverageMeter() self.all_timings_dict[name] = None def add_new_cuda_timing(self, name): start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) self.cuda_event_timers[name] = self.CUDATimer(start=start_event, end=end_event) self.add_new_timing(name) def clear_timings(self): self.all_timings_dict = {k:None for k in self.all_timings_dict} def get_timings(self): return self.all_timings_dict def get_average_timings(self): return {k:v.avg for k,v in self.avg_meter_dict.items()} def update_all_averages(self): """ Once per iter, when timings have been finished recording, one should call update_average_iter to keep running average of timings. """ for k,v in self.all_timings_dict.items(): if v is None: print("none_timing", k) continue self.avg_meter_dict[k].update(v) def record_timing(self, name, value): if name not in self.all_timings_dict: self.add_new_timing(name) # assert name in self.all_timings_dict self.all_timings_dict[name] = value def _record_cuda_event_start(self, name): if name in self.cuda_event_timers: self.cuda_event_timers[name].start.record( torch.cuda.current_stream(self.device)) def _record_cuda_event_end(self, name): if name in self.cuda_event_timers: self.cuda_event_timers[name].end.record( torch.cuda.current_stream(self.device)) @contextmanager def cuda_timing_scope(self, name, profile=True): if name not in self.all_timings_dict: self.add_new_cuda_timing(name) with ScopedTorchProfiler(name) if profile else nullcontext(): self._record_cuda_event_start(name) try: yield finally: self._record_cuda_event_end(name) @contextmanager def timing_scope(self, name, profile=True): if name not in self.all_timings_dict: self.add_new_timing(name) with ScopedTorchProfiler(name) if profile else nullcontext(): start_time = time.time() try: yield finally: self.record_timing(name, time.time()-start_time) def record_all_cuda_timings(self): """ After all the cuda events call this to synchronize and record down the cuda timings. """ for k, events in self.cuda_event_timers.items(): with torch.no_grad(): events.end.synchronize() # Convert to seconds time_elapsed = events.start.elapsed_time(events.end)/1000. self.all_timings_dict[k] = time_elapsed def init_s3(config_file): config = json.load(open(config_file, 'r')) s3_client = boto3.client("s3", **config) return s3_client def download_from_s3(file_path, target_path, cfg): tic = time.time() s3_client = init_s3(cfg.checkpoint.write_s3_config) # use to test the s3_client can be init bucket_name = file_path.split('/')[2] file_key = file_path.split(bucket_name+'/')[-1] print(bucket_name, file_key) s3_client.download_file(bucket_name, file_key, target_path) logger.info(f'finish download from ! s3://{bucket_name}/{file_key} to {target_path} %.1f sec'%( time.time() - tic)) def upload_to_s3(buffer, bucket_name, key, config_dict): logger.info(f'start upload_to_s3! bucket_name={bucket_name}, key={key}') tic = time.time() s3 = boto3.client('s3', **config_dict) s3.put_object(Bucket=bucket_name, Key=key, Body=buffer.getvalue()) logger.info(f'finish upload_to_s3! s3://{bucket_name}/{key} %.1f sec'%(time.time() - tic)) def write_ckpt_to_s3(cfg, all_model_dict, ckpt_name): buffer = io.BytesIO() tic = time.time() torch.save(all_model_dict, buffer) # take ~0.25 sec # logger.info('write ckpt to buffer: %.2f sec'%(time.time() - tic)) group, name = cfg.outdir.rstrip("/").split("/")[-2:] key = f"checkpoints/{group}/{name}/ckpt/{ckpt_name}" bucket_name = cfg.checkpoint.write_s3_bucket s3_client = init_s3(cfg.checkpoint.write_s3_config) # use to test the s3_client can be init config_dict = json.load(open(cfg.checkpoint.write_s3_config, 'r')) upload_thread = threading.Thread(target=upload_to_s3, args=(buffer, bucket_name, key, config_dict)) upload_thread.start() path = f"s3://{bucket_name}/{key}" return path def upload_file_to_s3(cfg, file_path, key_name=None): # file_path is the local file path, can be a yaml file # this function is used to upload the ckecpoint only tic = time.time() group, name = cfg.outdir.rstrip("/").split("/")[-2:] if key_name is None: key = os.path.basename(file_path) key = f"checkpoints/{group}/{name}/{key}" bucket_name = cfg.checkpoint.write_s3_bucket s3_client = init_s3(cfg.checkpoint.write_s3_config) # Upload the file with open(file_path, 'rb') as f: s3_client.upload_fileobj(f, bucket_name, key) full_s3_path = f"s3://{bucket_name}/{key}" logger.info(f'upload_to_s3: {file_path} {full_s3_path} | use time: {time.time()-tic}') return full_s3_path def load_from_s3(file_path, cfg, load_fn): """ ckpt_path example: s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt """ s3_client = init_s3(cfg.checkpoint.write_s3_config) # use to test the s3_client can be init bucket_name = file_path.split("s3://")[-1].split('/')[0] key = file_path.split(f'{bucket_name}/')[-1] # logger.info(f"-> try to load s3://{bucket_name}/{key} ") tic = time.time() for attemp in range(10): try: # Download the state dict from S3 into memory (as a binary stream) with io.BytesIO() as buffer: s3_client.download_fileobj(bucket_name, key, buffer) buffer.seek(0) # Load the state dict into a PyTorch model # out = torch.load(buffer, map_location=torch.device("cpu")) out = load_fn(buffer) break except: logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}") from torch_utils.dist_utils import is_rank0 if is_rank0(): logger.info(f'loaded {file_path} | use time: {time.time()-tic:.1f} sec') return out def load_torch_dict_from_s3(ckpt_path, cfg): """ ckpt_path example: s3://xzeng/checkpoints/2023_0413/vae_kl_5e-1/ckpt/snapshot_epo000163_iter164000.pt """ s3_client = init_s3(cfg.checkpoint.write_s3_config) # use to test the s3_client can be init bucket_name = ckpt_path.split("s3://")[-1].split('/')[0] key = ckpt_path.split(f'{bucket_name}/')[-1] for attemp in range(10): try: # Download the state dict from S3 into memory (as a binary stream) with io.BytesIO() as buffer: s3_client.download_fileobj(bucket_name, key, buffer) buffer.seek(0) # Load the state dict into a PyTorch model out = torch.load(buffer, map_location=torch.device("cpu")) break except: logger.info(f"fail to load s3://{bucket_name}/{key} attemp: {attemp}") return out def count_parameters_in_M(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 def printarr(*arrs, float_width=6, **kwargs): """ Print a pretty table giving name, shape, dtype, type, and content information for input tensors or scalars. Call like: printarr(my_arr, some_other_arr, maybe_a_scalar). Accepts a variable number of arguments. Inputs can be: - Numpy tensor arrays - Pytorch tensor arrays - Jax tensor arrays - Python ints / floats - None It may also work with other array-like types, but they have not been tested. Use the `float_width` option specify the precision to which floating point types are printed. Author: Nicholas Sharp (nmwsharp.com) Canonical source: https://gist.github.com/nmwsharp/54d04af87872a4988809f128e1a1d233 License: This snippet may be used under an MIT license, and it is also released into the public domain. Please retain this docstring as a reference. """ frame = inspect.currentframe().f_back default_name = "[temporary]" ## helpers to gather data about each array def name_from_outer_scope(a): if a is None: return '[None]' name = default_name for k, v in frame.f_locals.items(): if v is a: name = k break return name def type_strip(type_str): return type_str.lstrip('').replace('torch.', '').strip("'") def dtype_str(a): if a is None: return 'None' if isinstance(a, int): return 'int' if isinstance(a, float): return 'float' if isinstance(a, list) and len(a)>0: return type_strip(str(type(a[0]))) if hasattr(a, 'dtype'): return type_strip(str(a.dtype)) else: return '' def shape_str(a): if a is None: return 'N/A' if isinstance(a, int): return 'scalar' if isinstance(a, float): return 'scalar' if isinstance(a, list): return f"[{shape_str(a[0]) if len(a)>0 else '?'}]*{len(a)}" if hasattr(a, 'shape'): return str(tuple(a.shape)) else: return '' def type_str(a): return type_strip(str(type(a))) # TODO this is is weird... what's the better way? def device_str(a): if hasattr(a, 'device'): device_str = str(a.device) if len(device_str) < 10: # heuristic: jax returns some goofy long string we don't want, ignore it return device_str return "" def format_float(x): return f"{x:{float_width}g}" def minmaxmean_str(a): if a is None: return ('N/A', 'N/A', 'N/A', 'N/A') if isinstance(a, int) or isinstance(a, float): return (format_float(a),)*4 # compute min/max/mean. if anything goes wrong, just print 'N/A' min_str = "N/A" try: min_str = format_float(a.min()) except: pass max_str = "N/A" try: max_str = format_float(a.max()) except: pass mean_str = "N/A" try: mean_str = format_float(a.mean()) except: pass try: median_str = format_float(a.median()) except: try: median_str = format_float(np.median(np.array(a))) except: median_str = 'N/A' return (min_str, max_str, mean_str, median_str) def get_prop_dict(a,k=None): minmaxmean = minmaxmean_str(a) props = { 'name' : name_from_outer_scope(a) if k is None else k, # 'type' : str(type(a)).replace('torch.',''), 'dtype' : dtype_str(a), 'shape' : shape_str(a), 'type' : type_str(a), 'device' : device_str(a), 'min' : minmaxmean[0], 'max' : minmaxmean[1], 'mean' : minmaxmean[2], 'median': minmaxmean[3] } return props try: props = ['name', 'type', 'dtype', 'shape', 'device', 'min', 'max', 'mean', 'median'] # precompute all of the properties for each input str_props = [] for a in arrs: str_props.append(get_prop_dict(a)) for k,a in kwargs.items(): str_props.append(get_prop_dict(a, k=k)) # for each property, compute its length maxlen = {} for p in props: maxlen[p] = 0 for sp in str_props: for p in props: maxlen[p] = max(maxlen[p], len(sp[p])) # if any property got all empty strings, don't bother printing it, remove if from the list props = [p for p in props if maxlen[p] > 0] # print a header header_str = "" for p in props: prefix = "" if p == 'name' else " | " fmt_key = ">" if p == 'name' else "<" header_str += f"{prefix}{p:{fmt_key}{maxlen[p]}}" print(header_str) print("-"*len(header_str)) # now print the acual arrays for strp in str_props: for p in props: prefix = "" if p == 'name' else " | " fmt_key = ">" if p == 'name' else "<" print(f"{prefix}{strp[p]:{fmt_key}{maxlen[p]}}", end='') print("") finally: del frame def debug_print_all_tensor_sizes(min_tot_size = 0): import gc print("---------------------------------------"*3) for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): if np.prod(obj.size())>=min_tot_size: print(type(obj), obj.size()) except: pass def print_cpu_usage(): # Get current CPU usage as a percentage cpu_usage = psutil.cpu_percent() # Get current memory usage memory_usage = psutil.virtual_memory().used # Convert memory usage to a human-readable format memory_usage_str = psutil._common.bytes2human(memory_usage) # Print CPU and memory usage msg = f"Current CPU usage: {cpu_usage}% | " msg += f"Current memory usage: {memory_usage_str}" return msg def calmsize(num_bytes): if math.isnan(num_bytes): return '' for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num_bytes) < 1024.0: return "{:.1f}{}B".format(num_bytes, unit) num_bytes /= 1024.0 return "{:.1f}{}B".format(num_bytes, 'Y') def readable_size(num_bytes: int) -> str: return calmsize(num_bytes) ## '' if math.isnan(num_bytes) else '{:.1f}'.format(calmsize(num_bytes)) def get_gpu_memory(): """ Get the current GPU memory usage for each device as a dictionary """ output = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.used", "--format=csv"]) output = output.decode("utf-8") gpu_memory_values = output.split("\n")[1:-1] gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values] gpu_memory = dict(zip(range(len(gpu_memory_values)), gpu_memory_values)) return gpu_memory def get_gpu_util(): """ Get the current GPU memory usage for each device as a dictionary """ output = subprocess.check_output(["nvidia-smi", "--query-gpu=utilization.gpu", "--format=csv"]) output = output.decode("utf-8") gpu_memory_values = output.split("\n")[1:-1] gpu_memory_values = [int(x.strip().split()[0]) for x in gpu_memory_values] gpu_util = dict(zip(range(len(gpu_memory_values)), gpu_memory_values)) return gpu_util def print_gpu_usage(): useage = get_gpu_memory() msg = f" | GPU usage: " for k, v in useage.items(): msg += f"{k}: {v} MB " # utilization = get_gpu_util() # msg + ' | util ' # for k, v in utilization.items(): # msg += f"{k}: {v} % " return msg class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def generate_random_string(length): # This script will generate a string of 10 random ASCII letters (both lowercase and uppercase). # You can adjust the length parameter to fit your needs. letters = string.ascii_letters return ''.join(random.choice(letters) for _ in range(length)) class ForkedPdb(pdb.Pdb): """ PDB Subclass for debugging multi-processed code Suggested in: https://stackoverflow.com/questions/4716533/how-to-attach-debugger-to-a-python-subproccess """ def interaction(self, *args, **kwargs): _stdin = sys.stdin try: sys.stdin = open('/dev/stdin') pdb.Pdb.interaction(self, *args, **kwargs) finally: sys.stdin = _stdin def check_exist_in_s3(file_path, s3_config): s3 = init_s3(s3_config) bucket_name, object_name = s3path_to_bucket_key(file_path) try: s3.head_object(Bucket=bucket_name, Key=object_name) return 1 except: logger.info(f'file not found: s3://{bucket_name}/{object_name}') return 0 def s3path_to_bucket_key(file_path): bucket_name = file_path.split('/')[2] object_name = file_path.split(bucket_name + '/')[-1] return bucket_name, object_name def copy_file_to_s3(cfg, file_path_local, file_path_s3): # work similar as upload_file_to_s3, but not trying to parse the file path # file_path_s3: s3://{bucket}/{key} bucket_name, key = s3path_to_bucket_key(file_path_s3) tic = time.time() s3_client = init_s3(cfg.checkpoint.write_s3_config) # Upload the file with open(file_path_local, 'rb') as f: s3_client.upload_fileobj(f, bucket_name, key) full_s3_path = f"s3://{bucket_name}/{key}" logger.info(f'copy file: {file_path_local} {full_s3_path} | use time: {time.time()-tic}') return full_s3_path