import torch.nn as nn from . import functional as F from .voxelization import Voxelization from .shared_mlp import SharedMLP import torch __all__ = ['PVConv'] class PVConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, resolution, with_se=False, normalize=True, eps=0, scale_pvcnn=False, device='cuda'): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.resolution = resolution self.voxelization = Voxelization(resolution, normalize=normalize, eps=eps, scale_pvcnn=scale_pvcnn) voxel_layers = [ nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2, device=device), nn.InstanceNorm3d(out_channels, eps=1e-4, device=device), nn.LeakyReLU(0.1, True), nn.Conv3d(out_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2, device=device), nn.InstanceNorm3d(out_channels, eps=1e-4, device=device), nn.LeakyReLU(0.1, True), ] self.voxel_layers = nn.Sequential(*voxel_layers) self.point_features = SharedMLP(in_channels, out_channels, device=device) def forward(self, inputs): features, coords = inputs voxel_features, voxel_coords = self.voxelization(features, coords) voxel_features = self.voxel_layers(voxel_features) devoxel_features = F.trilinear_devoxelize(voxel_features, voxel_coords, self.resolution, self.training) fused_features = devoxel_features + self.point_features(features) return fused_features, coords, voxel_features