import torch import torch.nn as nn from . import functional as F __all__ = ['Voxelization'] def my_voxelization(features, coords, resolution): b, c, _ = features.shape result = torch.zeros(b, c + 1, resolution * resolution * resolution, device=features.device, dtype=features.dtype) r = resolution r2 = resolution * resolution coords = coords.long() indices = coords[:, 0] * r2 + coords[:, 1] * r + coords[:, 2] # print(r, r2, coords[:, 0].max(), coords[:, 1].max(), coords[:, 2].max()) # print(f"Resolution: {resolution}") # print(f"Coords shape: {coords.shape}") # print(f"Coords max per dim: x={coords[:, 0].max()}, y={coords[:, 1].max()}, z={coords[:, 2].max()}") # print(f"Coords min per dim: x={coords[:, 0].min()}, y={coords[:, 1].min()}, z={coords[:, 2].min()}") # print(f"Indices shape: {indices.shape}") # print(f"Indices max: {indices.max()}, min: {indices.min()}") # print(f"Expected max index: {resolution * resolution * resolution - 1}") # # 检查是否有越界的索引 # max_valid_index = resolution * resolution * resolution - 1 # invalid_mask = (indices > max_valid_index) | (indices < 0) # if invalid_mask.any(): # print(f"Found {invalid_mask.sum()} invalid indices!") # print(f"Invalid indices: {indices[invalid_mask]}") # # 找到对应的坐标 # invalid_coords = coords[:, :, invalid_mask.any(dim=0)] # print(f"Invalid coords shape: {invalid_coords.shape}") # if invalid_coords.numel() > 0: # print(f"Sample invalid coords: {invalid_coords[:, :, :5]}") # 显示前5个无效坐标 indices = indices.unsqueeze(dim=1).expand(-1, result.shape[1], -1) features = torch.cat([features, torch.ones(features.shape[0], 1, features.shape[2], device=features.device, dtype=features.dtype)], dim=1) out_feature = result.scatter_(index=indices.long(), src=features, dim=2, reduce='add') cnt = out_feature[:, -1:, :] zero_mask = (cnt == 0).to(features.dtype) cnt = cnt * (1 - zero_mask) + zero_mask * 1e-5 vox_feature = out_feature[:, :-1, :] / cnt return vox_feature.view(b, c, resolution, resolution, resolution) class Voxelization(nn.Module): def __init__(self, resolution, normalize=True, eps=0, scale_pvcnn=False): super().__init__() self.r = int(resolution) self.normalize = normalize self.eps = eps self.scale_pvcnn = scale_pvcnn assert not normalize def forward(self, features, coords): # import pdb; pdb.set_trace() with torch.no_grad(): coords = coords.detach() if self.normalize: norm_coords = norm_coords / (norm_coords.norm(dim=1, keepdim=True).max(dim=2, keepdim=True).values * 2.0 + self.eps) + 0.5 else: if self.scale_pvcnn: norm_coords = (coords + 1) / 2.0 # [0, 1] # print(norm_coords.shape, norm_coords.max(), norm_coords.min()) else: # norm_coords = (norm_coords + 1) / 2.0 norm_coords = (coords + 1) / 2.0 norm_coords = torch.clamp(norm_coords * self.r, 0, self.r - 1) # print(norm_coords.shape, norm_coords.max(), norm_coords.min()) vox_coords = torch.round(norm_coords) # print(vox_coords.shape, vox_coords.max(), vox_coords.min()) # print(features.shape) new_vox_feat = my_voxelization(features, vox_coords, self.r) return new_vox_feat, norm_coords def extra_repr(self): return 'resolution={}{}'.format(self.r, ', normalized eps = {}'.format(self.eps) if self.normalize else '')