""" This file implements a Sparse Structure Flow model for 3D data generation or transformation. It contains a transformer-based architecture that processes 3D volumes by: 1. Embedding timesteps for diffusion/flow-based modeling 2. Patchifying 3D inputs for efficient processing 3. Using cross-attention mechanisms to condition the generation on external features 4. Supporting various positional encoding schemes for 3D data The model is designed for high-dimensional structure generation with conditional inputs and follows a transformer-based architecture similar to DiT (Diffusion Transformers). """ from typing import * import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from ..modules.utils import convert_module_to_f16, convert_module_to_f32 from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock from ..modules.spatial import patchify, unpatchify class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. This is crucial for diffusion models where the model needs to know which noise level (timestep) it's currently operating at. """ def __init__(self, hidden_size, frequency_embedding_size=256): """ Initialize the timestep embedder. Args: hidden_size: Dimension of the output embeddings frequency_embedding_size: Dimension of the intermediate frequency embeddings """ super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings similar to positional encodings in transformers. Args: t: a 1-D Tensor of N indices, one per batch element. These may be fractional. dim: the dimension of the output. max_period: controls the minimum frequency of the embeddings. Returns: an (N, D) Tensor of positional embeddings. """ # Implementation based on OpenAI's GLIDE repository half = dim // 2 freqs = torch.exp( -np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): """ Embed timesteps into vectors. Args: t: Timesteps to embed [batch_size] Returns: Embedded timesteps [batch_size, hidden_size] """ t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class SparseStructureFlowModel(nn.Module): """ A transformer-based model for processing 3D data with conditional inputs. The model patchifies 3D volumes, processes them with transformer blocks, and then reconstructs the 3D volume at the output. """ def __init__( self, resolution: int, in_channels: int, model_channels: int, cond_channels: int, out_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4, patch_size: int = 2, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, share_mod: bool = False, qk_rms_norm: bool = False, qk_rms_norm_cross: bool = False, ): """ Initialize the Sparse Structure Flow model. Args: resolution: Input resolution (assumes cubic inputs of shape [resolution, resolution, resolution]) in_channels: Number of input channels model_channels: Number of model's internal channels cond_channels: Number of channels in conditional input out_channels: Number of output channels num_blocks: Number of transformer blocks num_heads: Number of attention heads (defaults to model_channels // num_head_channels) num_head_channels: Number of channels per attention head mlp_ratio: Ratio for MLP hidden dimension relative to model_channels patch_size: Size of patches for patchifying the input pe_mode: Type of positional encoding ("ape" for absolute, "rope" for rotary) use_fp16: Whether to use FP16 precision for most operations use_checkpoint: Whether to use gradient checkpointing to save memory share_mod: Whether to share modulation layers across blocks qk_rms_norm: Whether to use RMS normalization for query and key in self-attention qk_rms_norm_cross: Whether to use RMS normalization for query and key in cross-attention """ super().__init__() self.resolution = resolution self.in_channels = in_channels self.model_channels = model_channels self.cond_channels = cond_channels self.out_channels = out_channels self.num_blocks = num_blocks self.num_heads = num_heads or model_channels // num_head_channels self.mlp_ratio = mlp_ratio self.patch_size = patch_size self.pe_mode = pe_mode self.use_fp16 = use_fp16 self.use_checkpoint = use_checkpoint self.share_mod = share_mod self.qk_rms_norm = qk_rms_norm self.qk_rms_norm_cross = qk_rms_norm_cross self.dtype = torch.float16 if use_fp16 else torch.float32 # Timestep embedding network self.t_embedder = TimestepEmbedder(model_channels) # Optional shared modulation for all blocks if share_mod: self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(model_channels, 6 * model_channels, bias=True) ) # Set up positional encoding if pe_mode == "ape": pos_embedder = AbsolutePositionEmbedder(model_channels, 3) # Create a grid of 3D coordinates for each patch position coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij') coords = torch.stack(coords, dim=-1).reshape(-1, 3) pos_emb = pos_embedder(coords) self.register_buffer("pos_emb", pos_emb) # Input projection layer self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels) # Transformer blocks with cross-attention for conditioning self.blocks = nn.ModuleList([ ModulatedTransformerCrossBlock( model_channels, cond_channels, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, attn_mode='full', use_checkpoint=self.use_checkpoint, use_rope=(pe_mode == "rope"), share_mod=share_mod, qk_rms_norm=self.qk_rms_norm, qk_rms_norm_cross=self.qk_rms_norm_cross, ) for _ in range(num_blocks) ]) # Output projection layer self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3) # Initialize model weights self.initialize_weights() if use_fp16: self.convert_to_fp16() @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the transformer blocks of the model to float16 for improved efficiency. """ self.blocks.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the transformer blocks of the model back to float32 (e.g., for inference). """ self.blocks.apply(convert_module_to_f32) def initialize_weights(self) -> None: """ Initialize the weights of the model using carefully chosen initialization schemes. """ # Initialize transformer layers with Xavier uniform initialization def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP with normal distribution nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers to ensure stable training initially if self.share_mod: nn.init.constant_(self.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.adaLN_modulation[-1].bias, 0) else: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers to ensure initial predictions are near zero nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor: """ Forward pass of the model. Args: x: Input tensor of shape [batch_size, in_channels, resolution, resolution, resolution] t: Timestep tensor of shape [batch_size] cond: Conditional input tensor Returns: Output tensor of shape [batch_size, out_channels, resolution, resolution, resolution] """ # Validate input shape assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \ f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}" # Patchify the input volume and reshape for transformer processing h = patchify(x, self.patch_size) h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous() # [B, num_patches, patch_dim] # Project to model dimension h = self.input_layer(h) # Add positional embeddings h = h + self.pos_emb[None] # Get timestep embeddings t_emb = self.t_embedder(t) if self.share_mod: t_emb = self.adaLN_modulation(t_emb) # Convert to appropriate dtype for computation t_emb = t_emb.type(self.dtype) h = h.type(self.dtype) cond = cond.type(self.dtype) # print("transfer cond") # print("*" * 20) # print(cond.shape) # torch.Size([4, 4122, 1024]) # Process through transformer blocks for block in self.blocks: h = block(h, t_emb, cond) # print("transferred ") # Convert back to original dtype h = h.type(x.dtype) # Final normalization and projection h = F.layer_norm(h, h.shape[-1:]) h = self.out_layer(h) # Reshape and unpatchify to get final 3D output h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3) h = unpatchify(h, self.patch_size).contiguous() return h