""" sparse_structure_vae.py This file implements a Variational Autoencoder (VAE) for 3D sparse structural representations. It's part of the TRELLIS framework and contains components for encoding volumetric data into a latent space and decoding it back to volumetric representation. The implementation includes: - 3D normalization layers - 3D residual blocks for feature extraction - 3D downsampling and upsampling blocks for resolution changes - Encoder (SparseStructureEncoder) that maps input volumes to a latent distribution - Decoder (SparseStructureDecoder) that reconstructs volumes from latent codes This VAE architecture is specifically designed for capturing structural information in a compressed latent representation that can be sampled probabilistically. """ from typing import * import torch import torch.nn as nn import torch.nn.functional as F from ..modules.norm import GroupNorm32, ChannelLayerNorm32 from ..modules.spatial import pixel_shuffle_3d from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module: """ Return a normalization layer based on the specified type. Args: norm_type: Either "group" for GroupNorm or "layer" for LayerNorm *args, **kwargs: Arguments passed to the normalization layer Returns: An instance of the requested normalization layer """ if norm_type == "group": return GroupNorm32(32, *args, **kwargs) elif norm_type == "layer": return ChannelLayerNorm32(*args, **kwargs) else: raise ValueError(f"Invalid norm type {norm_type}") class ResBlock3d(nn.Module): """ 3D Residual Block with two convolutions and a skip connection. The block applies normalization, activation, and convolution twice, with a skip connection from the input to the output. """ def __init__( self, channels: int, out_channels: Optional[int] = None, norm_type: Literal["group", "layer"] = "layer", ): """ Initialize a 3D ResBlock. Args: channels: Number of input channels out_channels: Number of output channels (defaults to input channels) norm_type: Type of normalization to use """ super().__init__() self.channels = channels self.out_channels = out_channels or channels # First normalization and convolution self.norm1 = norm_layer(norm_type, channels) self.norm2 = norm_layer(norm_type, self.out_channels) self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1) # Second convolution is initialized with zeros for stable training self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)) # Skip connection: identity if channels match, otherwise 1x1 conv self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the ResBlock. Args: x: Input tensor of shape [B, C, D, H, W] Returns: Output tensor after residual computation """ h = self.norm1(x) h = F.silu(h) h = self.conv1(h) h = self.norm2(h) h = F.silu(h) h = self.conv2(h) h = h + self.skip_connection(x) # Residual connection return h class DownsampleBlock3d(nn.Module): """ 3D downsampling block to reduce spatial dimensions by a factor of 2. Supports downsampling via strided convolution or average pooling. """ def __init__( self, in_channels: int, out_channels: int, mode: Literal["conv", "avgpool"] = "conv", ): """ Initialize a 3D downsampling block. Args: in_channels: Number of input channels out_channels: Number of output channels mode: Downsampling method ("conv" or "avgpool") """ assert mode in ["conv", "avgpool"], f"Invalid mode {mode}" super().__init__() self.in_channels = in_channels self.out_channels = out_channels if mode == "conv": self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2) elif mode == "avgpool": assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels" def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the downsampling block. Args: x: Input tensor of shape [B, C, D, H, W] Returns: Downsampled tensor """ if hasattr(self, "conv"): return self.conv(x) else: return F.avg_pool3d(x, 2) class UpsampleBlock3d(nn.Module): """ 3D upsampling block to increase spatial dimensions by a factor of 2. Supports upsampling via transposed convolution or nearest-neighbor interpolation. """ def __init__( self, in_channels: int, out_channels: int, mode: Literal["conv", "nearest"] = "conv", ): """ Initialize a 3D upsampling block. Args: in_channels: Number of input channels out_channels: Number of output channels mode: Upsampling method ("conv" or "nearest") """ assert mode in ["conv", "nearest"], f"Invalid mode {mode}" super().__init__() self.in_channels = in_channels self.out_channels = out_channels if mode == "conv": # For pixel shuffle upsampling, we need 8x channels (2³ = 8) self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1) elif mode == "nearest": assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels" def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the upsampling block. Args: x: Input tensor of shape [B, C, D, H, W] Returns: Upsampled tensor """ if hasattr(self, "conv"): x = self.conv(x) return pixel_shuffle_3d(x, 2) # 3D pixel shuffle for upsampling else: return F.interpolate(x, scale_factor=2, mode="nearest") class SparseStructureEncoder(nn.Module): """ Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3). Takes a 3D volume as input and encodes it into a latent distribution (mean and logvar). Can sample from this distribution to get a latent representation. Args: in_channels (int): Channels of the input. latent_channels (int): Channels of the latent representation. num_res_blocks (int): Number of residual blocks at each resolution. channels (List[int]): Channels of the encoder blocks. num_res_blocks_middle (int): Number of residual blocks in the middle. norm_type (Literal["group", "layer"]): Type of normalization layer. use_fp16 (bool): Whether to use FP16. """ def __init__( self, in_channels: int, latent_channels: int, num_res_blocks: int, channels: List[int], num_res_blocks_middle: int = 2, norm_type: Literal["group", "layer"] = "layer", use_fp16: bool = False, ): """ Initialize the encoder for sparse structure. """ super().__init__() self.in_channels = in_channels self.latent_channels = latent_channels self.num_res_blocks = num_res_blocks self.channels = channels self.num_res_blocks_middle = num_res_blocks_middle self.norm_type = norm_type self.use_fp16 = use_fp16 self.dtype = torch.float16 if use_fp16 else torch.float32 # Initial projection from input to feature space self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1) # Encoder blocks with progressive downsampling self.blocks = nn.ModuleList([]) for i, ch in enumerate(channels): # Add residual blocks at the current resolution self.blocks.extend([ ResBlock3d(ch, ch) for _ in range(num_res_blocks) ]) # Add downsampling block if not at the final resolution if i < len(channels) - 1: self.blocks.append( DownsampleBlock3d(ch, channels[i+1]) ) # Middle blocks at the lowest resolution self.middle_block = nn.Sequential(*[ ResBlock3d(channels[-1], channels[-1]) for _ in range(num_res_blocks_middle) ]) # Output layer produces both mean and logvar for the latent distribution self.out_layer = nn.Sequential( norm_layer(norm_type, channels[-1]), nn.SiLU(), nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1) ) if use_fp16: self.convert_to_fp16() @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the torso of the model to float16. """ self.use_fp16 = True self.dtype = torch.float16 self.blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the torso of the model to float32. """ self.use_fp16 = False self.dtype = torch.float32 self.blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor: """ Forward pass through the encoder. Args: x: Input tensor of shape [B, C, D, H, W] sample_posterior: Whether to sample from the posterior distribution or just return mean return_raw: Whether to return the raw outputs (z, mean, logvar) instead of just z Returns: Either the latent representation or a tuple of (z, mean, logvar) if return_raw=True """ h = self.input_layer(x) h = h.type(self.dtype) # Convert to FP16 if needed # Process through encoder blocks for block in self.blocks: h = block(h) h = self.middle_block(h) h = h.type(x.dtype) # Convert back to input dtype h = self.out_layer(h) # Split output into mean and log variance mean, logvar = h.chunk(2, dim=1) # Sample from the posterior if requested if sample_posterior: std = torch.exp(0.5 * logvar) z = mean + std * torch.randn_like(std) # Reparameterization trick else: z = mean if return_raw: return z, mean, logvar return z class SparseStructureDecoder(nn.Module): """ Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3). Takes a latent representation and decodes it back to a 3D volume. Uses a symmetric architecture to the encoder with upsampling instead of downsampling. Args: out_channels (int): Channels of the output. latent_channels (int): Channels of the latent representation. num_res_blocks (int): Number of residual blocks at each resolution. channels (List[int]): Channels of the decoder blocks. num_res_blocks_middle (int): Number of residual blocks in the middle. norm_type (Literal["group", "layer"]): Type of normalization layer. use_fp16 (bool): Whether to use FP16. """ def __init__( self, out_channels: int, latent_channels: int, num_res_blocks: int, channels: List[int], num_res_blocks_middle: int = 2, norm_type: Literal["group", "layer"] = "layer", use_fp16: bool = False, ): """ Initialize the decoder for sparse structure. """ super().__init__() self.out_channels = out_channels self.latent_channels = latent_channels self.num_res_blocks = num_res_blocks self.channels = channels self.num_res_blocks_middle = num_res_blocks_middle self.norm_type = norm_type self.use_fp16 = use_fp16 self.dtype = torch.float16 if use_fp16 else torch.float32 # Initial projection from latent space to feature space self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1) # Middle blocks at the lowest resolution self.middle_block = nn.Sequential(*[ ResBlock3d(channels[0], channels[0]) for _ in range(num_res_blocks_middle) ]) # Decoder blocks with progressive upsampling self.blocks = nn.ModuleList([]) for i, ch in enumerate(channels): # Add residual blocks at the current resolution self.blocks.extend([ ResBlock3d(ch, ch) for _ in range(num_res_blocks) ]) # Add upsampling block if not at the final resolution if i < len(channels) - 1: self.blocks.append( UpsampleBlock3d(ch, channels[i+1]) ) # Final output layer to generate the desired output channels self.out_layer = nn.Sequential( norm_layer(norm_type, channels[-1]), nn.SiLU(), nn.Conv3d(channels[-1], out_channels, 3, padding=1) ) if use_fp16: self.convert_to_fp16() @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the torso of the model to float16. """ self.use_fp16 = True self.dtype = torch.float16 self.blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the torso of the model to float32. """ self.use_fp16 = False self.dtype = torch.float32 self.blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through the decoder. Args: x: Latent representation tensor of shape [B, C, D, H, W] Returns: Reconstructed output tensor """ h = self.input_layer(x) h = h.type(self.dtype) # Convert to FP16 if needed h = self.middle_block(h) # Process through decoder blocks for block in self.blocks: h = block(h) h = h.type(x.dtype) # Convert back to input dtype h = self.out_layer(h) return h