""" Structured Latent Variable Encoder Module ---------------------------------------- This file defines encoder classes for the Structured Latent Variable Autoencoder (SLatVAE). It contains implementations for the sparse transformer-based encoder that maps input features to a latent distribution, as well as a memory-efficient elastic version. The encoder follows a variational approach, outputting means and log variances for the latent space representation. """ from typing import * import torch import torch.nn as nn import torch.nn.functional as F from ...modules import sparse as sp from .base import SparseTransformerBase from ..sparse_elastic_mixin import SparseTransformerElasticMixin class SLatEncoder(SparseTransformerBase): """ Sparse Latent Variable Encoder that uses transformer architecture to encode sparse data into a latent distribution. """ def __init__( self, resolution: int, in_channels: int, model_channels: int, latent_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4, attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", window_size: int = 8, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, qk_rms_norm: bool = False, ): """ Initialize the Sparse Latent Encoder. Args: resolution: Input data resolution in_channels: Number of input feature channels model_channels: Number of internal model feature channels latent_channels: Dimension of the latent space num_blocks: Number of transformer blocks num_heads: Number of attention heads (optional) num_head_channels: Channels per attention head if num_heads is None mlp_ratio: Expansion ratio for MLP in transformer blocks attn_mode: Type of attention mechanism to use window_size: Size of attention windows if using windowed attention pe_mode: Positional encoding mode (absolute or relative) use_fp16: Whether to use half-precision floating point use_checkpoint: Whether to use gradient checkpointing qk_rms_norm: Whether to apply RMS normalization to query and key """ super().__init__( in_channels=in_channels, model_channels=model_channels, num_blocks=num_blocks, num_heads=num_heads, num_head_channels=num_head_channels, mlp_ratio=mlp_ratio, attn_mode=attn_mode, window_size=window_size, pe_mode=pe_mode, use_fp16=use_fp16, use_checkpoint=use_checkpoint, qk_rms_norm=qk_rms_norm, ) self.resolution = resolution # Output layer projects to twice the latent dimension (for mean and logvar) self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels) self.initialize_weights() if use_fp16: self.convert_to_fp16() def initialize_weights(self) -> None: """ Initialize model weights with special handling for output layer. The output layer weights are initialized to zero to stabilize training. """ super().initialize_weights() # Zero-out output layers for better training stability nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False): """ Forward pass through the encoder. Args: x: Input sparse tensor sample_posterior: Whether to sample from posterior or return mean return_raw: Whether to return mean and logvar in addition to samples Returns: If return_raw is True: - sampled latent variables, mean, and logvar Otherwise: - sampled latent variables only """ # Process through transformer blocks h = super().forward(x) h = h.type(x.dtype) # Apply layer normalization to features h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) h = self.out_layer(h) # Split output into mean and logvar components mean, logvar = h.feats.chunk(2, dim=-1) if sample_posterior: # Reparameterization trick: z = mean + std * epsilon std = torch.exp(0.5 * logvar) z = mean + std * torch.randn_like(std) else: # Use mean directly without sampling z = mean z = h.replace(z) if return_raw: return z, mean, logvar else: return z class ElasticSLatEncoder(SparseTransformerElasticMixin, SLatEncoder): """ SLat VAE encoder with elastic memory management. Used for training with low VRAM by dynamically managing memory allocation and performing operations with reduced memory footprint. """ pass