File size: 14,137 Bytes
a560c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input pipeline for TFDS datasets."""

import functools
import os
from typing import Dict, List, Tuple

from clu import deterministic_data
from clu import preprocess_spec

import jax
import jax.numpy as jnp
import ml_collections

import sunds
import tensorflow as tf
import tensorflow_datasets as tfds

from invariant_slot_attention.lib import preprocessing

Array = jnp.ndarray
PRNGKey = Array


PATH_CLEVR_WITH_MASKS = "gs://multi-object-datasets/clevr_with_masks/clevr_with_masks_train.tfrecords"
FEATURES_CLEVR_WITH_MASKS = {
    "image": tf.io.FixedLenFeature([240, 320, 3], tf.string),
    "mask": tf.io.FixedLenFeature([11, 240, 320, 1], tf.string),
    "x": tf.io.FixedLenFeature([11], tf.float32),
    "y": tf.io.FixedLenFeature([11], tf.float32),
    "z": tf.io.FixedLenFeature([11], tf.float32),
    "pixel_coords": tf.io.FixedLenFeature([11, 3], tf.float32),
    "rotation": tf.io.FixedLenFeature([11], tf.float32),
    "size": tf.io.FixedLenFeature([11], tf.string),
    "material": tf.io.FixedLenFeature([11], tf.string),
    "shape": tf.io.FixedLenFeature([11], tf.string),
    "color": tf.io.FixedLenFeature([11], tf.string),
    "visibility": tf.io.FixedLenFeature([11], tf.float32),
}

PATH_TETROMINOES = "gs://multi-object-datasets/tetrominoes/tetrominoes_train.tfrecords"
FEATURES_TETROMINOES = {
    "image": tf.io.FixedLenFeature([35, 35, 3], tf.string),
    "mask": tf.io.FixedLenFeature([4, 35, 35, 1], tf.string),
    "x": tf.io.FixedLenFeature([4], tf.float32),
    "y": tf.io.FixedLenFeature([4], tf.float32),
    "shape": tf.io.FixedLenFeature([4], tf.float32),
    "color": tf.io.FixedLenFeature([4, 3], tf.float32),
    "visibility": tf.io.FixedLenFeature([4], tf.float32),
}

PATH_OBJECTS_ROOM = "gs://multi-object-datasets/objects_room/objects_room_train.tfrecords"
FEATURES_OBJECTS_ROOM = {
    "image": tf.io.FixedLenFeature([64, 64, 3], tf.string),
    "mask": tf.io.FixedLenFeature([7, 64, 64, 1], tf.string),
}

PATH_WAYMO_OPEN = "datasets/waymo_v_1_4_0_images/tfrecords"

FEATURES_WAYMO_OPEN = {
    "image": tf.io.FixedLenFeature([128, 192, 3], tf.string),
    "segmentations": tf.io.FixedLenFeature([128, 192], tf.string),
    "depth": tf.io.FixedLenFeature([128, 192], tf.float32),
    "num_objects": tf.io.FixedLenFeature([1], tf.int64),
    "has_mask": tf.io.FixedLenFeature([1], tf.int64),
    "camera": tf.io.FixedLenFeature([1], tf.int64),
}


def _decode_tetrominoes(example_proto):
  single_example = tf.io.parse_single_example(
      example_proto, FEATURES_TETROMINOES)
  for k in ["mask", "image"]:
    single_example[k] = tf.squeeze(
        tf.io.decode_raw(single_example[k], tf.uint8), axis=-1)
  return single_example


def _decode_objects_room(example_proto):
  single_example = tf.io.parse_single_example(
      example_proto, FEATURES_OBJECTS_ROOM)
  for k in ["mask", "image"]:
    single_example[k] = tf.squeeze(
        tf.io.decode_raw(single_example[k], tf.uint8), axis=-1)
  return single_example


def _decode_clevr_with_masks(example_proto):
  single_example = tf.io.parse_single_example(
      example_proto, FEATURES_CLEVR_WITH_MASKS)
  for k in ["mask", "image", "color", "material", "shape", "size"]:
    single_example[k] = tf.squeeze(
        tf.io.decode_raw(single_example[k], tf.uint8), axis=-1)
  return single_example


def _decode_waymo_open(example_proto):
  """Unserializes a serialized tf.train.Example sample."""
  single_example = tf.io.parse_single_example(
      example_proto, FEATURES_WAYMO_OPEN)
  for k in ["image", "segmentations"]:
    single_example[k] = tf.squeeze(
        tf.io.decode_raw(single_example[k], tf.uint8), axis=-1)
  single_example["segmentations"] = tf.expand_dims(
      single_example["segmentations"], axis=-1)
  single_example["depth"] = tf.expand_dims(
      single_example["depth"], axis=-1)
  return single_example


def _preprocess_minimal(example):
  return {
      "image": example["image"],
      "segmentations": tf.cast(tf.argmax(example["mask"], axis=0), tf.uint8),
  }


def _sunds_create_task():
  """Create a sunds task to return images and instance segmentation."""
  return sunds.tasks.Nerf(
      yield_mode=sunds.tasks.YieldMode.IMAGE,
      additional_camera_specs={
          "depth_image": False,  # Not available in the dataset.
          "category_image": False,  # Not available in the dataset.
          "instance_image": True,
          "extrinsics": True,
      },
      additional_frame_specs={"pose": True},
      add_name=True
  )


def preprocess_example(features,
                       preprocess_strs):
  """Processes a single data example.

  Args:
    features: A dictionary containing the tensors of a single data example.
    preprocess_strs: List of strings, describing one preprocessing operation
      each, in clu.preprocess_spec format.

  Returns:
    Dictionary containing the preprocessed tensors of a single data example.
  """
  all_ops = preprocessing.all_ops()
  preprocess_fn = preprocess_spec.parse("|".join(preprocess_strs), all_ops)
  return preprocess_fn(features)  # pytype: disable=bad-return-type  # allow-recursive-types


def get_batch_dims(global_batch_size):
  """Gets the first two axis sizes for data batches.

  Args:
    global_batch_size: Integer, the global batch size (across all devices).

  Returns:
    List of batch dimensions

  Raises:
    ValueError if the requested dimensions don't make sense with the
      number of devices.
  """
  num_local_devices = jax.local_device_count()
  if global_batch_size % jax.host_count() != 0:
    raise ValueError(f"Global batch size {global_batch_size} not evenly "
                     f"divisble with {jax.host_count()}.")
  per_host_batch_size = global_batch_size // jax.host_count()
  if per_host_batch_size % num_local_devices != 0:
    raise ValueError(f"Global batch size {global_batch_size} not evenly "
                     f"divisible with {jax.host_count()} hosts with a per host "
                     f"batch size of {per_host_batch_size} and "
                     f"{num_local_devices} local devices. ")
  return [num_local_devices, per_host_batch_size // num_local_devices]


def create_datasets(
    config,
    data_rng):
  """Create datasets for training and evaluation.

  For the same data_rng and config this will return the same datasets. The
  datasets only contain stateless operations.

  Args:
    config: Configuration to use.
    data_rng: JAX PRNGKey for dataset pipeline.

  Returns:
    A tuple with the training dataset and the evaluation dataset.
  """

  if config.data.dataset_name == "tetrominoes":
    ds = tf.data.TFRecordDataset(
        PATH_TETROMINOES,
        compression_type="GZIP", buffer_size=2*(2**20))
    ds = ds.map(_decode_tetrominoes,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)
    ds = ds.map(_preprocess_minimal,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)

    class TetrominoesBuilder:
      """Builder for tentrominoes dataset."""

      def as_dataset(self, split, *unused_args, ds=ds, **unused_kwargs):
        """Simple function to conform to the builder api."""
        if split == "train":
          # We use 512 training examples.
          ds = ds.skip(100)
          ds = ds.take(512)
          return tf.data.experimental.assert_cardinality(512)(ds)
        elif split == "validation":
          # 100 validation examples.
          ds = ds.take(100)
          return tf.data.experimental.assert_cardinality(100)(ds)
        else:
          raise ValueError("Invalid split.")

    dataset_builder = TetrominoesBuilder()
  elif config.data.dataset_name == "objects_room":
    ds = tf.data.TFRecordDataset(
        PATH_OBJECTS_ROOM,
        compression_type="GZIP", buffer_size=2*(2**20))
    ds = ds.map(_decode_objects_room,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)
    ds = ds.map(_preprocess_minimal,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)

    class ObjectsRoomBuilder:
      """Builder for objects room dataset."""

      def as_dataset(self, split, *unused_args, ds=ds, **unused_kwargs):
        """Simple function to conform to the builder api."""
        if split == "train":
          # 1M - 100 training examples.
          ds = ds.skip(100)
          return tf.data.experimental.assert_cardinality(999900)(ds)
        elif split == "validation":
          # 100 validation examples.
          ds = ds.take(100)
          return tf.data.experimental.assert_cardinality(100)(ds)
        else:
          raise ValueError("Invalid split.")

    dataset_builder = ObjectsRoomBuilder()
  elif config.data.dataset_name == "clevr_with_masks":
    ds = tf.data.TFRecordDataset(
        PATH_CLEVR_WITH_MASKS,
        compression_type="GZIP", buffer_size=2*(2**20))
    ds = ds.map(_decode_clevr_with_masks,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)
    ds = ds.map(_preprocess_minimal,
                num_parallel_calls=tf.data.experimental.AUTOTUNE)

    class CLEVRWithMasksBuilder:
      def as_dataset(self, split, *unused_args, ds=ds, **unused_kwargs):
        if split == "train":
          ds = ds.skip(100)
          return tf.data.experimental.assert_cardinality(99900)(ds)
        elif split == "validation":
          ds = ds.take(100)
          return tf.data.experimental.assert_cardinality(100)(ds)
        else:
          raise ValueError("Invalid split.")

    dataset_builder = CLEVRWithMasksBuilder()
  elif config.data.dataset_name == "waymo_open":
    train_path = os.path.join(
        PATH_WAYMO_OPEN, "training/camera_1/*tfrecords*")
    eval_path = os.path.join(
        PATH_WAYMO_OPEN, "validation/camera_1/*tfrecords*")

    train_files = tf.data.Dataset.list_files(train_path)
    eval_files = tf.data.Dataset.list_files(eval_path)

    train_data_reader = functools.partial(
        tf.data.TFRecordDataset,
        compression_type="ZLIB", buffer_size=2*(2**20))
    eval_data_reader = functools.partial(
        tf.data.TFRecordDataset,
        compression_type="ZLIB", buffer_size=2*(2**20))

    train_dataset = train_files.interleave(
        train_data_reader, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    eval_dataset = eval_files.interleave(
        eval_data_reader, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    train_dataset = train_dataset.map(
        _decode_waymo_open, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    eval_dataset = eval_dataset.map(
        _decode_waymo_open, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    # We need to set the dataset cardinality. We assume we have
    # the full dataset.
    train_dataset = train_dataset.apply(
        tf.data.experimental.assert_cardinality(158081))

    class WaymoOpenBuilder:
      def as_dataset(self, split, *unused_args, **unused_kwargs):
        if split == "train":
          return train_dataset
        elif split == "validation":
          return eval_dataset
        else:
          raise ValueError("Invalid split.")

    dataset_builder = WaymoOpenBuilder()
  elif config.data.dataset_name == "multishapenet_easy":
    dataset_builder = sunds.builder(
        name=config.get("tfds_name", "msn_easy"),
        data_dir=config.get(
            "data_dir", "gs://kubric-public/tfds"),
        try_gcs=True)
    dataset_builder.as_dataset = functools.partial(
        dataset_builder.as_dataset, task=_sunds_create_task())
  elif config.data.dataset_name == "tfds":
    dataset_builder = tfds.builder(
        config.data.tfds_name, data_dir=config.data.data_dir)
  else:
    raise ValueError("Please specify a valid dataset name.")

  batch_dims = get_batch_dims(config.batch_size)

  train_preprocess_fn = functools.partial(
      preprocess_example, preprocess_strs=config.preproc_train)
  eval_preprocess_fn = functools.partial(
      preprocess_example, preprocess_strs=config.preproc_eval)

  train_split_name = config.get("train_split", "train")
  eval_split_name = config.get("validation_split", "validation")

  train_ds = deterministic_data.create_dataset(
      dataset_builder,
      split=train_split_name,
      rng=data_rng,
      preprocess_fn=train_preprocess_fn,
      cache=False,
      shuffle_buffer_size=config.data.shuffle_buffer_size,
      batch_dims=batch_dims,
      num_epochs=None,
      shuffle=True)

  if config.data.dataset_name == "waymo_open":
    # We filter Waymo Open for empty segmentation masks.
    def filter_fn(features):
      unique_instances = tf.unique(
          tf.reshape(features[preprocessing.SEGMENTATIONS], (-1,)))[0]
      n_instances = tf.size(unique_instances, tf.int32)
      # n_instances == 1 means we only have the background.
      return 2 <= n_instances
  else:
    filter_fn = None

  eval_ds = deterministic_data.create_dataset(
      dataset_builder,
      split=eval_split_name,
      rng=None,
      preprocess_fn=eval_preprocess_fn,
      filter_fn=filter_fn,
      cache=False,
      batch_dims=batch_dims,
      num_epochs=1,
      shuffle=False,
      pad_up_to_batches=None)

  if config.data.dataset_name == "waymo_open":
    # We filter Waymo Open for empty segmentation masks after preprocessing.
    # For the full dataset, we know how many we will end up with.
    eval_batch_size = batch_dims[0] * batch_dims[1]
    # We don't pad the last batch => floor.
    eval_num_batches = int(
        jnp.floor(1872 / eval_batch_size / jax.host_count()))
    eval_ds = eval_ds.apply(
        tf.data.experimental.assert_cardinality(
            eval_num_batches))

  return train_ds, eval_ds