Spaces:
Build error
Build error
File size: 12,358 Bytes
a560c26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main model training loop."""
import functools
import os
import time
from typing import Dict, Iterable, Mapping, Optional, Tuple, Type, Union
from absl import logging
from clu import checkpoint
from clu import metric_writers
from clu import metrics
from clu import parameter_overview
from clu import periodic_actions
import flax
from flax import linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import optax
from scenic.train_lib import lr_schedules
from scenic.train_lib import optimizers
import tensorflow as tf
from invariant_slot_attention.lib import evaluator
from invariant_slot_attention.lib import input_pipeline
from invariant_slot_attention.lib import losses
from invariant_slot_attention.lib import utils
Array = jnp.ndarray
ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]] # pytype: disable=not-supported-yet
PRNGKey = Array
def train_step(
model,
tx,
rng,
step,
state_vars,
opt_state,
params,
batch,
loss_fn,
train_metrics_cls,
predicted_max_num_instances,
ground_truth_max_num_instances,
conditioning_key = None,
):
"""Perform a single training step.
Args:
model: Model used in training step.
tx: The optimizer to use to minimize loss_fn.
rng: Random number key
step: Which training step we are on.
state_vars: Accessory variables.
opt_state: The state of the optimizer.
params: The current parameters to be updated.
batch: Training inputs for this step.
loss_fn: Loss function that takes model predictions and a batch of data.
train_metrics_cls: The metrics collection for computing training metrics.
predicted_max_num_instances: Maximum number of instances in prediction.
ground_truth_max_num_instances: Maximum number of instances in ground truth,
including background (which counts as a separate instance).
conditioning_key: Optional string. If provided, defines the batch key to be
used as conditioning signal for the model. Otherwise this is inferred from
the available keys in the batch.
Returns:
Tuple of the updated opt, state_vars, new random number key,
metrics update, and step + 1. Note that some of this info is stored in
TrainState, but here it is unpacked.
"""
# Split PRNGKey and bind to host / device.
new_rng, rng = jax.random.split(rng)
rng = jax.random.fold_in(rng, jax.host_id())
rng = jax.random.fold_in(rng, jax.lax.axis_index("batch"))
init_rng, dropout_rng = jax.random.split(rng, 2)
mutable_var_keys = list(state_vars.keys()) + ["intermediates"]
conditioning = batch[conditioning_key] if conditioning_key else None
def train_loss_fn(params, state_vars):
preds, mutable_vars = model.apply(
{"params": params, **state_vars}, video=batch["video"],
conditioning=conditioning, mutable=mutable_var_keys,
rngs={"state_init": init_rng, "dropout": dropout_rng}, train=True,
padding_mask=batch.get("padding_mask"))
# Filter intermediates, as we do not want to store them in the TrainState.
state_vars = utils.filter_key_from_frozen_dict(
mutable_vars, key="intermediates")
loss, loss_aux = loss_fn(preds, batch)
return loss, (state_vars, preds, loss_aux)
grad_fn = jax.value_and_grad(train_loss_fn, has_aux=True)
(loss, (state_vars, preds, loss_aux)), grad = grad_fn(params, state_vars)
# Compute average gradient across multiple workers.
grad = jax.lax.pmean(grad, axis_name="batch")
updates, new_opt_state = tx.update(grad, opt_state, params)
new_params = optax.apply_updates(params, updates)
# Compute metrics.
metrics_update = train_metrics_cls.gather_from_model_output(
loss=loss,
**loss_aux,
predicted_segmentations=utils.remove_singleton_dim(
preds["outputs"].get("segmentations")), # pytype: disable=attribute-error
ground_truth_segmentations=batch.get("segmentations"),
predicted_max_num_instances=predicted_max_num_instances,
ground_truth_max_num_instances=ground_truth_max_num_instances,
padding_mask=batch.get("padding_mask"),
mask=batch.get("mask"))
return (
new_opt_state, new_params, state_vars, new_rng, metrics_update, step + 1)
def train_and_evaluate(config,
workdir):
"""Runs a training and evaluation loop.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
"""
rng = jax.random.PRNGKey(config.seed)
tf.io.gfile.makedirs(workdir)
# Input pipeline.
rng, data_rng = jax.random.split(rng)
# Make sure each host uses a different RNG for the training data.
if config.get("seed_data", True): # Default to seeding data if not specified.
data_rng = jax.random.fold_in(data_rng, jax.host_id())
else:
data_rng = None
train_ds, eval_ds = input_pipeline.create_datasets(config, data_rng)
train_iter = iter(train_ds) # pytype: disable=wrong-arg-types
# Initialize model
model = utils.build_model_from_config(config.model)
# Construct TrainMetrics and EvalMetrics, metrics collections.
train_metrics_cls = utils.make_metrics_collection("TrainMetrics",
config.train_metrics_spec)
eval_metrics_cls = utils.make_metrics_collection("EvalMetrics",
config.eval_metrics_spec)
def init_model(rng):
rng, init_rng, model_rng, dropout_rng = jax.random.split(rng, num=4)
init_conditioning = None
if config.get("conditioning_key"):
init_conditioning = jnp.ones(
[1] + list(train_ds.element_spec[config.conditioning_key].shape)[2:],
jnp.int32)
init_inputs = jnp.ones(
[1] + list(train_ds.element_spec["video"].shape)[2:],
jnp.float32)
initial_vars = model.init(
{"params": model_rng, "state_init": init_rng, "dropout": dropout_rng},
video=init_inputs, conditioning=init_conditioning,
padding_mask=jnp.ones(init_inputs.shape[:-1], jnp.int32))
# Split into state variables (e.g. for batchnorm stats) and model params.
# Note that `pop()` on a FrozenDict performs a deep copy.
state_vars, initial_params = initial_vars.pop("params") # pytype: disable=attribute-error
# Filter out intermediates (we don't want to store these in the TrainState).
state_vars = utils.filter_key_from_frozen_dict(
state_vars, key="intermediates")
return state_vars, initial_params
state_vars, initial_params = init_model(rng)
parameter_overview.log_parameter_overview(initial_params) # pytype: disable=wrong-arg-types
learning_rate_fn = lr_schedules.get_learning_rate_fn(config)
tx = optimizers.get_optimizer(
config.optimizer_configs, learning_rate_fn, params=initial_params)
opt_state = tx.init(initial_params)
state = utils.TrainState(
step=1, opt_state=opt_state, params=initial_params, rng=rng,
variables=state_vars)
loss_fn = functools.partial(
losses.compute_full_loss, loss_config=config.losses)
checkpoint_dir = os.path.join(workdir, "checkpoints")
ckpt = checkpoint.MultihostCheckpoint(checkpoint_dir)
state = ckpt.restore_or_initialize(state)
initial_step = int(state.step)
# Replicate our parameters.
state = flax.jax_utils.replicate(state, devices=jax.local_devices())
del rng # rng is stored in the state.
# Only write metrics on host 0, write to logs on all other hosts.
writer = metric_writers.create_default_writer(
workdir, just_logging=jax.host_id() > 0)
writer.write_hparams(utils.prepare_dict_for_logging(config.to_dict()))
logging.info("Starting training loop at step %d.", initial_step)
report_progress = periodic_actions.ReportProgress(
num_train_steps=config.num_train_steps, writer=writer)
if jax.process_index() == 0:
profiler = periodic_actions.Profile(num_profile_steps=5, logdir=workdir)
p_train_step = jax.pmap(
train_step,
axis_name="batch",
donate_argnums=(2, 3, 4, 5, 6, 7),
static_broadcasted_argnums=(0, 1, 8, 9, 10, 11, 12))
train_metrics = None
with metric_writers.ensure_flushes(writer):
if config.num_train_steps == 0:
with report_progress.timed("eval"):
evaluate(model, state, eval_ds, loss_fn, eval_metrics_cls, config,
writer, step=0)
with report_progress.timed("checkpoint"):
ckpt.save(flax.jax_utils.unreplicate(state))
return
for step in range(initial_step, config.num_train_steps + 1):
# `step` is a Python integer. `state.step` is JAX integer on GPU/TPU.
is_last_step = step == config.num_train_steps
with jax.profiler.StepTraceAnnotation("train", step_num=step):
batch = jax.tree_map(np.asarray, next(train_iter))
(opt_state, params, state_vars, rng, metrics_update, p_step
) = p_train_step(
model, tx, state.rng, state.step, state.variables,
state.opt_state, state.params, batch, loss_fn,
train_metrics_cls,
config.num_slots,
config.max_instances + 1, # Incl. background.
config.get("conditioning_key"))
state = state.replace( # pytype: disable=attribute-error
opt_state=opt_state,
params=params,
step=p_step,
variables=state_vars,
rng=rng,
)
metric_update = flax.jax_utils.unreplicate(metrics_update)
train_metrics = (
metric_update
if train_metrics is None else train_metrics.merge(metric_update))
# Quick indication that training is happening.
logging.log_first_n(logging.INFO, "Finished training step %d.", 5, step)
report_progress(step, time.time())
if jax.process_index() == 0:
profiler(step)
if step % config.log_loss_every_steps == 0 or is_last_step:
metrics_res = train_metrics.compute()
writer.write_scalars(step, jax.tree_map(np.array, metrics_res))
train_metrics = None
if step % config.eval_every_steps == 0 or is_last_step:
with report_progress.timed("eval"):
evaluate(model, state, eval_ds, loss_fn, eval_metrics_cls,
config, writer, step=step)
if step % config.checkpoint_every_steps == 0 or is_last_step:
with report_progress.timed("checkpoint"):
ckpt.save(flax.jax_utils.unreplicate(state))
def evaluate(model, state, eval_ds, loss_fn_eval, eval_metrics_cls, config,
writer, step):
"""Evaluate the model."""
eval_metrics, eval_batch, eval_preds = evaluator.evaluate(
model,
state,
eval_ds,
loss_fn_eval,
eval_metrics_cls,
predicted_max_num_instances=config.num_slots,
ground_truth_max_num_instances=config.max_instances + 1, # Incl. bg.
slice_size=config.get("eval_slice_size"),
slice_keys=config.get("eval_slice_keys"),
conditioning_key=config.get("conditioning_key"),
remove_from_predictions=config.get("remove_from_predictions"),
metrics_on_cpu=config.get("metrics_on_cpu", False))
metrics_res = eval_metrics.compute()
writer.write_scalars(
step, jax.tree_map(np.array, utils.flatten_named_dicttree(metrics_res)))
writer.write_images(
step,
jax.tree_map(
np.array,
utils.prepare_images_for_logging(
config,
eval_batch,
eval_preds,
n_samples=config.get("n_samples", 5),
n_frames=config.get("n_frames", 1),
min_n_colors=config.get("logging_min_n_colors", 1))))
|