File size: 7,667 Bytes
a560c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implementation of ResNet V1 in Flax.

"Deep Residual Learning for Image Recognition"
He et al., 2015, [https://arxiv.org/abs/1512.03385]
"""

import functools

from typing import Any, Tuple, Type, List, Optional, Callable, Sequence
import flax.linen as nn
import jax.numpy as jnp


Conv1x1 = functools.partial(nn.Conv, kernel_size=(1, 1), use_bias=False)
Conv3x3 = functools.partial(nn.Conv, kernel_size=(3, 3), use_bias=False)


class ResNetBlock(nn.Module):
  """ResNet block without bottleneck used in ResNet-18 and ResNet-34."""

  filters: int
  norm: Any
  kernel_dilation: Tuple[int, int] = (1, 1)
  strides: Tuple[int, int] = (1, 1)

  @nn.compact
  def __call__(self, x):
    residual = x

    x = Conv3x3(
        self.filters,
        strides=self.strides,
        kernel_dilation=self.kernel_dilation,
        name="conv1")(x)
    x = self.norm(name="bn1")(x)
    x = nn.relu(x)
    x = Conv3x3(self.filters, name="conv2")(x)
    # Initializing the scale to 0 has been common practice since "Fixup
    # Initialization: Residual Learning Without Normalization" Tengyu et al,
    # 2019, [https://openreview.net/forum?id=H1gsz30cKX].
    x = self.norm(scale_init=nn.initializers.zeros, name="bn2")(x)

    if residual.shape != x.shape:
      residual = Conv1x1(
          self.filters, strides=self.strides, name="proj_conv")(
              residual)
      residual = self.norm(name="proj_bn")(residual)

    x = nn.relu(residual + x)
    return x


class BottleneckResNetBlock(ResNetBlock):
  """Bottleneck ResNet block used in ResNet-50 and larger."""

  @nn.compact
  def __call__(self, x):
    residual = x

    x = Conv1x1(self.filters, name="conv1")(x)
    x = self.norm(name="bn1")(x)
    x = nn.relu(x)
    x = Conv3x3(
        self.filters,
        strides=self.strides,
        kernel_dilation=self.kernel_dilation,
        name="conv2")(x)
    x = self.norm(name="bn2")(x)
    x = nn.relu(x)
    x = Conv1x1(4 * self.filters, name="conv3")(x)
    # Initializing the scale to 0 has been common practice since "Fixup
    # Initialization: Residual Learning Without Normalization" Tengyu et al,
    # 2019, [https://openreview.net/forum?id=H1gsz30cKX].
    x = self.norm(name="bn3")(x)

    if residual.shape != x.shape:
      residual = Conv1x1(
          4 * self.filters, strides=self.strides, name="proj_conv")(
              residual)
      residual = self.norm(name="proj_bn")(residual)

    x = nn.relu(residual + x)
    return x


class ResNetStage(nn.Module):
  """ResNet stage consistent of multiple ResNet blocks."""

  stage_size: int
  filters: int
  block_cls: Type[ResNetBlock]
  norm: Any
  first_block_strides: Tuple[int, int]

  @nn.compact
  def __call__(self, x):
    for i in range(self.stage_size):
      x = self.block_cls(
          filters=self.filters,
          norm=self.norm,
          strides=self.first_block_strides if i == 0 else (1, 1),
          name=f"block{i + 1}")(
              x)
    return x


class ResNet(nn.Module):
  """Construct ResNet V1 with `num_classes` outputs.

  Attributes:
    num_classes: Number of nodes in the final layer.
    block_cls: Class for the blocks. ResNet-50 and larger use
      `BottleneckResNetBlock` (convolutions: 1x1, 3x3, 1x1), ResNet-18 and
        ResNet-34 use `ResNetBlock` without bottleneck (two 3x3 convolutions).
    stage_sizes: List with the number of ResNet blocks in each stage. Number of
      stages can be varied.
    norm_type: Which type of normalization layer to apply. Options are:
      "batch": BatchNorm, "group": GroupNorm, "layer": LayerNorm. Defaults to
      BatchNorm.
    width_factor: Factor applied to the number of filters. The 64 * width_factor
      is the number of filters in the first stage, every consecutive stage
      doubles the number of filters.
    small_inputs: Bool, if True, ignore strides and skip max pooling in the root
      block and use smaller filter size.
    stage_strides: Stride per stage. This overrides all other arguments.
    include_top: Whether to include the fully-connected layer at the top
      of the network.
    axis_name: Axis name over which to aggregate batchnorm statistics.
  """
  num_classes: int
  block_cls: Type[ResNetBlock]
  stage_sizes: List[int]
  norm_type: str = "batch"
  width_factor: int = 1
  small_inputs: bool = False
  stage_strides: Optional[List[Tuple[int, int]]] = None
  include_top: bool = False
  axis_name: Optional[str] = None
  output_initializer: Callable[[Any, Sequence[int], Any], Any] = (
      nn.initializers.zeros)

  @nn.compact
  def __call__(self, x, *, train):
    """Apply the ResNet to the inputs `x`.

    Args:
      x: Inputs.
      train: Whether to use BatchNorm in training or inference mode.

    Returns:
      The output head with `num_classes` entries.
    """
    width = 64 * self.width_factor

    if self.norm_type == "batch":
      norm = functools.partial(
          nn.BatchNorm, use_running_average=not train, momentum=0.9,
          axis_name=self.axis_name)
    elif self.norm_type == "layer":
      norm = nn.LayerNorm
    elif self.norm_type == "group":
      norm = nn.GroupNorm
    else:
      raise ValueError(f"Invalid norm_type: {self.norm_type}")

    # Root block.
    x = nn.Conv(
        features=width,
        kernel_size=(7, 7) if not self.small_inputs else (3, 3),
        strides=(2, 2) if not self.small_inputs else (1, 1),
        use_bias=False,
        name="init_conv")(
            x)
    x = norm(name="init_bn")(x)

    if not self.small_inputs:
      x = nn.max_pool(x, (3, 3), strides=(2, 2), padding="SAME")

    # Stages.
    for i, stage_size in enumerate(self.stage_sizes):
      if i == 0:
        first_block_strides = (
            1, 1) if self.stage_strides is None else self.stage_strides[i]
      else:
        first_block_strides = (
            2, 2) if self.stage_strides is None else self.stage_strides[i]

      x = ResNetStage(
          stage_size,
          filters=width * 2**i,
          block_cls=self.block_cls,
          norm=norm,
          first_block_strides=first_block_strides,
          name=f"stage{i + 1}")(x)

    # Head.
    if self.include_top:
      x = jnp.mean(x, axis=(1, 2))
      x = nn.Dense(
          self.num_classes, kernel_init=self.output_initializer, name="head")(x)
    return x


ResNetWithBasicBlk = functools.partial(ResNet, block_cls=ResNetBlock)
ResNetWithBottleneckBlk = functools.partial(ResNet,
                                            block_cls=BottleneckResNetBlock)

ResNet18 = functools.partial(ResNetWithBasicBlk, stage_sizes=[2, 2, 2, 2])
ResNet34 = functools.partial(ResNetWithBasicBlk, stage_sizes=[3, 4, 6, 3])
ResNet50 = functools.partial(ResNetWithBottleneckBlk, stage_sizes=[3, 4, 6, 3])
ResNet101 = functools.partial(ResNetWithBottleneckBlk,
                              stage_sizes=[3, 4, 23, 3])
ResNet152 = functools.partial(ResNetWithBottleneckBlk,
                              stage_sizes=[3, 8, 36, 3])
ResNet200 = functools.partial(ResNetWithBottleneckBlk,
                              stage_sizes=[3, 24, 36, 3])