Spaces:
Build error
Build error
Commit
·
1e7763d
1
Parent(s):
8530ae8
Fix global state bug.
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
from clu import checkpoint
|
|
|
4 |
import gradio as gr
|
|
|
5 |
import jax
|
6 |
import jax.numpy as jnp
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
-
from huggingface_hub import snapshot_download
|
10 |
|
11 |
from invariant_slot_attention.configs.clevr_with_masks.equiv_transl_scale import get_config
|
12 |
from invariant_slot_attention.lib import utils
|
@@ -14,7 +16,6 @@ from invariant_slot_attention.lib import utils
|
|
14 |
|
15 |
def load_model(config, checkpoint_dir):
|
16 |
rng = jax.random.PRNGKey(42)
|
17 |
-
rng, data_rng = jax.random.split(rng)
|
18 |
|
19 |
# Initialize model
|
20 |
model = utils.build_model_from_config(config.model)
|
@@ -55,10 +56,9 @@ def load_image(name):
|
|
55 |
img = Image.open(f"images/{name}.png")
|
56 |
img = img.crop((64, 29, 64 + 192, 29 + 192))
|
57 |
img = img.resize((128, 128))
|
58 |
-
img_ = np.array(img)
|
59 |
img = np.array(img)[:, :, :3] / 255.
|
60 |
img = jnp.array(img, dtype=jnp.float32)
|
61 |
-
return img
|
62 |
|
63 |
|
64 |
download_path = snapshot_download(repo_id="ondrejbiza/isa")
|
@@ -68,8 +68,7 @@ model, state, rng = load_model(get_config(), checkpoint_dir)
|
|
68 |
|
69 |
rng, init_rng = jax.random.split(rng, num=2)
|
70 |
|
71 |
-
|
72 |
-
from typing import Callable
|
73 |
class DecoderWrapper(nn.Module):
|
74 |
decoder: Callable[[], nn.Module]
|
75 |
@nn.compact
|
@@ -77,17 +76,12 @@ class DecoderWrapper(nn.Module):
|
|
77 |
return self.decoder()(slots, train)
|
78 |
decoder_model = DecoderWrapper(decoder=model.decoder)
|
79 |
|
80 |
-
slots = np.zeros((11, 64), dtype=np.float32)
|
81 |
-
pos = np.zeros((11, 2), dtype=np.float32)
|
82 |
-
scale = np.zeros((11, 2), dtype=np.float32)
|
83 |
-
probs = np.zeros((11, 128, 128), dtype=np.float32)
|
84 |
-
|
85 |
with gr.Blocks() as demo:
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
with gr.Row():
|
93 |
|
@@ -116,89 +110,101 @@ with gr.Blocks() as demo:
|
|
116 |
def update_image_and_segmentation(name, idx):
|
117 |
idx = idx - 1
|
118 |
|
119 |
-
img_input
|
120 |
out = model.apply(
|
121 |
{"params": state.params, **state.variables},
|
122 |
video=img_input[None, None],
|
123 |
rngs={"state_init": init_rng},
|
124 |
train=False)
|
125 |
|
126 |
-
probs
|
127 |
img = np.array(out["outputs"]["video"][0, 0])
|
128 |
img = np.clip(img, 0, 1)
|
129 |
|
130 |
-
slots_ = out["states"]
|
131 |
-
slots
|
132 |
-
pos
|
133 |
-
scale
|
134 |
|
135 |
return (img * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8), float(pos[idx, 0]), \
|
136 |
-
float(pos[idx, 1]), float(scale[idx, 0]), float(scale[idx, 1])
|
137 |
|
138 |
gr_choose_image.change(
|
139 |
fn=update_image_and_segmentation,
|
140 |
inputs=[gr_choose_image, gr_slot_slider],
|
141 |
-
outputs=[gr_image_1, gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider
|
|
|
142 |
)
|
143 |
|
144 |
-
def update_sliders(idx):
|
145 |
idx = idx - 1 # 1-indexing to 0-indexing
|
146 |
-
return (
|
147 |
-
float(
|
148 |
|
149 |
gr_slot_slider.change(
|
150 |
fn=update_sliders,
|
151 |
-
inputs=gr_slot_slider,
|
152 |
outputs=[gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
|
153 |
)
|
154 |
|
155 |
-
def update_pos_x(idx, val):
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
def
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
gr_x_slider.change(
|
165 |
fn=update_pos_x,
|
166 |
-
inputs=[gr_slot_slider, gr_x_slider]
|
|
|
167 |
)
|
168 |
gr_y_slider.change(
|
169 |
fn=update_pos_y,
|
170 |
-
inputs=[gr_slot_slider, gr_y_slider]
|
|
|
171 |
)
|
172 |
gr_sx_slider.change(
|
173 |
fn=update_scale_x,
|
174 |
-
inputs=[gr_slot_slider, gr_sx_slider]
|
|
|
175 |
)
|
176 |
gr_sy_slider.change(
|
177 |
fn=update_scale_y,
|
178 |
-
inputs=[gr_slot_slider, gr_sy_slider]
|
|
|
179 |
)
|
180 |
|
181 |
-
def render(idx):
|
182 |
idx = idx - 1
|
183 |
|
184 |
-
|
185 |
-
|
186 |
|
187 |
out = decoder_model.apply(
|
188 |
{"params": state.params, **state.variables},
|
189 |
-
slots=
|
190 |
train=False
|
191 |
)
|
192 |
|
193 |
-
probs
|
194 |
image = np.array(out["video"][0, 0])
|
195 |
image = np.clip(image, 0, 1)
|
196 |
-
return (image * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8)
|
197 |
|
198 |
gr_button.click(
|
199 |
fn=render,
|
200 |
-
inputs=gr_slot_slider,
|
201 |
-
outputs=[gr_image_1, gr_image_2]
|
202 |
)
|
203 |
|
204 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
from typing import Callable
|
3 |
|
4 |
from clu import checkpoint
|
5 |
+
from flax import linen as nn
|
6 |
import gradio as gr
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
import jax
|
9 |
import jax.numpy as jnp
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
|
|
12 |
|
13 |
from invariant_slot_attention.configs.clevr_with_masks.equiv_transl_scale import get_config
|
14 |
from invariant_slot_attention.lib import utils
|
|
|
16 |
|
17 |
def load_model(config, checkpoint_dir):
|
18 |
rng = jax.random.PRNGKey(42)
|
|
|
19 |
|
20 |
# Initialize model
|
21 |
model = utils.build_model_from_config(config.model)
|
|
|
56 |
img = Image.open(f"images/{name}.png")
|
57 |
img = img.crop((64, 29, 64 + 192, 29 + 192))
|
58 |
img = img.resize((128, 128))
|
|
|
59 |
img = np.array(img)[:, :, :3] / 255.
|
60 |
img = jnp.array(img, dtype=jnp.float32)
|
61 |
+
return img
|
62 |
|
63 |
|
64 |
download_path = snapshot_download(repo_id="ondrejbiza/isa")
|
|
|
68 |
|
69 |
rng, init_rng = jax.random.split(rng, num=2)
|
70 |
|
71 |
+
|
|
|
72 |
class DecoderWrapper(nn.Module):
|
73 |
decoder: Callable[[], nn.Module]
|
74 |
@nn.compact
|
|
|
76 |
return self.decoder()(slots, train)
|
77 |
decoder_model = DecoderWrapper(decoder=model.decoder)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
79 |
with gr.Blocks() as demo:
|
80 |
|
81 |
+
local_slots = gr.State(np.zeros((11, 64), dtype=np.float32))
|
82 |
+
local_pos = gr.State(np.zeros((11, 2), dtype=np.float32))
|
83 |
+
local_scale = gr.State(np.zeros((11, 2), dtype=np.float32))
|
84 |
+
local_probs = gr.State(np.zeros((11, 128, 128), dtype=np.float32))
|
85 |
|
86 |
with gr.Row():
|
87 |
|
|
|
110 |
def update_image_and_segmentation(name, idx):
|
111 |
idx = idx - 1
|
112 |
|
113 |
+
img_input = load_image(name)
|
114 |
out = model.apply(
|
115 |
{"params": state.params, **state.variables},
|
116 |
video=img_input[None, None],
|
117 |
rngs={"state_init": init_rng},
|
118 |
train=False)
|
119 |
|
120 |
+
probs = np.array(nn.softmax(out["outputs"]["segmentation_logits"][0, 0, :, :, :, 0], axis=0))
|
121 |
img = np.array(out["outputs"]["video"][0, 0])
|
122 |
img = np.clip(img, 0, 1)
|
123 |
|
124 |
+
slots_ = np.array(out["states"])
|
125 |
+
slots = slots_[0, 0, :, :-4]
|
126 |
+
pos = slots_[0, 0, :, -4: -2]
|
127 |
+
scale = slots_[0, 0, :, -2:]
|
128 |
|
129 |
return (img * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8), float(pos[idx, 0]), \
|
130 |
+
float(pos[idx, 1]), float(scale[idx, 0]), float(scale[idx, 1]), probs, slots, pos, scale
|
131 |
|
132 |
gr_choose_image.change(
|
133 |
fn=update_image_and_segmentation,
|
134 |
inputs=[gr_choose_image, gr_slot_slider],
|
135 |
+
outputs=[gr_image_1, gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider,
|
136 |
+
local_probs, local_slots, local_pos, local_scale]
|
137 |
)
|
138 |
|
139 |
+
def update_sliders(idx, local_probs, local_pos, local_scale):
|
140 |
idx = idx - 1 # 1-indexing to 0-indexing
|
141 |
+
return (local_probs[idx] * 255).astype(np.uint8), float(local_pos[idx, 0]), \
|
142 |
+
float(local_pos[idx, 1]), float(local_scale[idx, 0]), float(local_scale[idx, 1])
|
143 |
|
144 |
gr_slot_slider.change(
|
145 |
fn=update_sliders,
|
146 |
+
inputs=[gr_slot_slider, local_probs, local_pos, local_scale],
|
147 |
outputs=[gr_image_2, gr_x_slider, gr_y_slider, gr_sx_slider, gr_sy_slider]
|
148 |
)
|
149 |
|
150 |
+
def update_pos_x(idx, val, local_pos):
|
151 |
+
local_pos[idx - 1, 0] = val
|
152 |
+
return local_pos
|
153 |
+
|
154 |
+
def update_pos_y(idx, val, local_pos):
|
155 |
+
local_pos[idx - 1, 1] = val
|
156 |
+
return local_pos
|
157 |
+
|
158 |
+
def update_scale_x(idx, val, local_scale):
|
159 |
+
local_scale[idx - 1, 0] = val
|
160 |
+
return local_scale
|
161 |
+
|
162 |
+
def update_scale_y(idx, val, local_scale):
|
163 |
+
local_scale[idx - 1, 1] = val
|
164 |
+
return local_scale
|
165 |
|
166 |
gr_x_slider.change(
|
167 |
fn=update_pos_x,
|
168 |
+
inputs=[gr_slot_slider, gr_x_slider, local_pos],
|
169 |
+
outputs=local_pos
|
170 |
)
|
171 |
gr_y_slider.change(
|
172 |
fn=update_pos_y,
|
173 |
+
inputs=[gr_slot_slider, gr_y_slider, local_pos],
|
174 |
+
outputs=local_pos
|
175 |
)
|
176 |
gr_sx_slider.change(
|
177 |
fn=update_scale_x,
|
178 |
+
inputs=[gr_slot_slider, gr_sx_slider, local_scale],
|
179 |
+
outputs=local_scale
|
180 |
)
|
181 |
gr_sy_slider.change(
|
182 |
fn=update_scale_y,
|
183 |
+
inputs=[gr_slot_slider, gr_sy_slider, local_scale],
|
184 |
+
outputs=local_scale
|
185 |
)
|
186 |
|
187 |
+
def render(idx, local_slots, local_pos, local_scale):
|
188 |
idx = idx - 1
|
189 |
|
190 |
+
slots = np.concatenate([local_slots, local_pos, local_scale], axis=-1)
|
191 |
+
slots = jnp.array(slots)
|
192 |
|
193 |
out = decoder_model.apply(
|
194 |
{"params": state.params, **state.variables},
|
195 |
+
slots=slots[None, None],
|
196 |
train=False
|
197 |
)
|
198 |
|
199 |
+
probs = np.array(nn.softmax(out["segmentation_logits"][0, 0, :, :, :, 0], axis=0))
|
200 |
image = np.array(out["video"][0, 0])
|
201 |
image = np.clip(image, 0, 1)
|
202 |
+
return (image * 255).astype(np.uint8), (probs[idx] * 255).astype(np.uint8), probs
|
203 |
|
204 |
gr_button.click(
|
205 |
fn=render,
|
206 |
+
inputs=[gr_slot_slider, local_slots, local_pos, local_scale],
|
207 |
+
outputs=[gr_image_1, gr_image_2, local_probs]
|
208 |
)
|
209 |
|
210 |
demo.launch()
|