Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,52 @@
|
|
| 1 |
-
import
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
import sqlparse
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
torch_dtype="auto",
|
| 12 |
-
device_map="auto"
|
| 13 |
-
)
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained("onkolahmet/Qwen2-0.5B-Instruct-SQL-generator")
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Construct prompt with few-shot examples and context if available
|
| 18 |
prompt = "Translate natural language questions to SQL queries.\n\n"
|
| 19 |
|
|
@@ -21,6 +54,9 @@ def generate_sql(question, context=None):
|
|
| 21 |
if context and context.strip():
|
| 22 |
prompt += f"Table Context:\n{context}\n\n"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Add the current question
|
| 26 |
prompt += f"Q: {question}\nSQL:"
|
|
@@ -146,36 +182,39 @@ def clean_sql_output(sql_text):
|
|
| 146 |
except:
|
| 147 |
return best_query
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
return "Please enter a question."
|
| 153 |
-
|
| 154 |
-
# Generate SQL from the question and context
|
| 155 |
-
raw_sql = generate_sql(question, table_context)
|
| 156 |
-
|
| 157 |
-
# Clean the SQL output
|
| 158 |
-
cleaned_sql = clean_sql_output(raw_sql)
|
| 159 |
-
|
| 160 |
-
if not cleaned_sql:
|
| 161 |
-
return "Sorry, I couldn't generate a valid SQL query. Please try rephrasing your question."
|
| 162 |
-
|
| 163 |
-
return cleaned_sql
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
order_date DATE
|
| 174 |
-
);
|
| 175 |
-
""",
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
CREATE TABLE products (
|
| 180 |
id INT PRIMARY KEY,
|
| 181 |
name VARCHAR(100),
|
|
@@ -183,10 +222,8 @@ CREATE TABLE products (
|
|
| 183 |
price DECIMAL(10,2),
|
| 184 |
stock_quantity INT
|
| 185 |
);
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# Example 3
|
| 189 |
-
"""
|
| 190 |
CREATE TABLE employees (
|
| 191 |
id INT PRIMARY KEY,
|
| 192 |
name VARCHAR(100),
|
|
@@ -201,87 +238,97 @@ CREATE TABLE departments (
|
|
| 201 |
manager_id INT,
|
| 202 |
budget DECIMAL(15,2)
|
| 203 |
);
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
-
"Get the names and emails of customers who placed an order in the last 30 days.",
|
| 210 |
-
"Find all products with less than 10 items in stock.",
|
| 211 |
-
"List all employees in the Sales department with a salary greater than 50000.",
|
| 212 |
-
"What is the total budget for departments with more than 5 employees?",
|
| 213 |
-
"Count how many products are in each category where the price is greater than 100."
|
| 214 |
-
]
|
| 215 |
|
| 216 |
-
#
|
| 217 |
-
with
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
with gr.Column():
|
| 223 |
-
question_input = gr.Textbox(
|
| 224 |
-
label="Your Question",
|
| 225 |
-
placeholder="e.g., Find all products with price less than $50",
|
| 226 |
-
lines=2
|
| 227 |
-
)
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
lines=10
|
| 233 |
-
)
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
["Get customers who placed orders in the last 7 days", example_contexts[0]],
|
| 252 |
-
["Count the number of products in each category", example_contexts[1]],
|
| 253 |
-
["Find the average salary by department", example_contexts[2]]
|
| 254 |
-
],
|
| 255 |
-
inputs=[question_input, table_context]
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
# Set up the submit button to trigger the process_input function
|
| 259 |
-
submit_btn.click(
|
| 260 |
-
fn=process_input,
|
| 261 |
-
inputs=[question_input, table_context],
|
| 262 |
-
outputs=sql_output
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
# Also trigger on pressing Enter in the question input
|
| 266 |
-
question_input.submit(
|
| 267 |
-
fn=process_input,
|
| 268 |
-
inputs=[question_input, table_context],
|
| 269 |
-
outputs=sql_output
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
# Add information about the model
|
| 273 |
-
gr.Markdown("""
|
| 274 |
-
### About
|
| 275 |
-
This app uses a fine-tuned language model to convert natural language questions into SQL queries.
|
| 276 |
-
|
| 277 |
-
- **Model**: [onkolahmet/Qwen2-0.5B-Instruct-SQL-generator](https://huggingface.co/onkolahmet/Qwen2-0.5B-Instruct-SQL-generator)
|
| 278 |
-
- **How to use**:
|
| 279 |
-
1. Enter your question in natural language
|
| 280 |
-
2. If you have specific table schemas, add them in the Table Context field
|
| 281 |
-
3. Click "Generate SQL Query" or press Enter
|
| 282 |
-
|
| 283 |
-
Note: The model works best when table context is provided, but can generate generic SQL queries without it.
|
| 284 |
-
""")
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
import sqlparse
|
| 6 |
+
import time
|
| 7 |
|
| 8 |
+
# App title and description
|
| 9 |
+
st.set_page_config(page_title="Text to SQL Converter", layout="wide")
|
| 10 |
+
st.title("Text to SQL Query Converter")
|
| 11 |
+
st.markdown("Enter your question and optional table context to generate an SQL query.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Model loading (with loading state indicator)
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_model():
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
st.info(f"Loading model on {device}... This may take a minute.")
|
| 18 |
+
|
| 19 |
+
# Load without device_map for compatibility
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
"onkolahmet/text_to_sql",
|
| 22 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 23 |
+
)
|
| 24 |
+
model = model.to(device)
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("onkolahmet/text_to_sql")
|
| 26 |
+
|
| 27 |
+
return model, tokenizer, device
|
| 28 |
+
|
| 29 |
+
# Few-shot examples to include in each prompt
|
| 30 |
+
examples = [
|
| 31 |
+
{
|
| 32 |
+
"question": "Get the names and emails of customers who placed an order in the last 30 days.",
|
| 33 |
+
"sql": "SELECT name, email FROM customers WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY);"
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"question": "Find all employees with a salary greater than 50000.",
|
| 37 |
+
"sql": "SELECT * FROM employees WHERE salary > 50000;"
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"question": "List all product names and their categories where the price is below 50.",
|
| 41 |
+
"sql": "SELECT name, category FROM products WHERE price < 50;"
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"question": "How many users registered in the year 2022?",
|
| 45 |
+
"sql": "SELECT COUNT(*) FROM users WHERE YEAR(registration_date) = 2022;"
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
def generate_sql(model, tokenizer, device, question, context=None):
|
| 50 |
# Construct prompt with few-shot examples and context if available
|
| 51 |
prompt = "Translate natural language questions to SQL queries.\n\n"
|
| 52 |
|
|
|
|
| 54 |
if context and context.strip():
|
| 55 |
prompt += f"Table Context:\n{context}\n\n"
|
| 56 |
|
| 57 |
+
# Add few-shot examples
|
| 58 |
+
for ex in examples:
|
| 59 |
+
prompt += f"Q: {ex['question']}\nSQL: {ex['sql']}\n\n"
|
| 60 |
|
| 61 |
# Add the current question
|
| 62 |
prompt += f"Q: {question}\nSQL:"
|
|
|
|
| 182 |
except:
|
| 183 |
return best_query
|
| 184 |
|
| 185 |
+
# Load model (this happens once when the app starts)
|
| 186 |
+
model, tokenizer, device = load_model()
|
| 187 |
+
st.success("Model loaded successfully! Ready to generate SQL queries.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
# Main app interface
|
| 190 |
+
col1, col2 = st.columns([1, 1])
|
| 191 |
+
|
| 192 |
+
with col1:
|
| 193 |
+
# User inputs
|
| 194 |
+
question = st.text_area("Your Question",
|
| 195 |
+
placeholder="e.g., Find all products with price less than $50",
|
| 196 |
+
height=100)
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
table_context = st.text_area("Table Context (Optional)",
|
| 199 |
+
placeholder="Enter your database schema or table definitions here...",
|
| 200 |
+
height=200)
|
| 201 |
+
|
| 202 |
+
# Example selection
|
| 203 |
+
with st.expander("Try an example", expanded=False):
|
| 204 |
+
example_option = st.selectbox(
|
| 205 |
+
"Select an example:",
|
| 206 |
+
[
|
| 207 |
+
"List all products in the 'Electronics' category with price less than $500",
|
| 208 |
+
"Find the total number of employees in each department",
|
| 209 |
+
"Get customers who placed orders in the last 7 days",
|
| 210 |
+
"Count the number of products in each category",
|
| 211 |
+
"Find the average salary by department"
|
| 212 |
+
]
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Sample table context examples mapped to questions
|
| 216 |
+
example_contexts = {
|
| 217 |
+
"List all products in the 'Electronics' category with price less than $500": """
|
| 218 |
CREATE TABLE products (
|
| 219 |
id INT PRIMARY KEY,
|
| 220 |
name VARCHAR(100),
|
|
|
|
| 222 |
price DECIMAL(10,2),
|
| 223 |
stock_quantity INT
|
| 224 |
);
|
| 225 |
+
""",
|
| 226 |
+
"Find the total number of employees in each department": """
|
|
|
|
|
|
|
| 227 |
CREATE TABLE employees (
|
| 228 |
id INT PRIMARY KEY,
|
| 229 |
name VARCHAR(100),
|
|
|
|
| 238 |
manager_id INT,
|
| 239 |
budget DECIMAL(15,2)
|
| 240 |
);
|
| 241 |
+
""",
|
| 242 |
+
"Get customers who placed orders in the last 7 days": """
|
| 243 |
+
CREATE TABLE customers (
|
| 244 |
+
id INT PRIMARY KEY,
|
| 245 |
+
name VARCHAR(100),
|
| 246 |
+
email VARCHAR(100),
|
| 247 |
+
order_date DATE
|
| 248 |
+
);
|
| 249 |
+
""",
|
| 250 |
+
"Count the number of products in each category": """
|
| 251 |
+
CREATE TABLE products (
|
| 252 |
+
id INT PRIMARY KEY,
|
| 253 |
+
name VARCHAR(100),
|
| 254 |
+
category VARCHAR(50),
|
| 255 |
+
price DECIMAL(10,2),
|
| 256 |
+
stock_quantity INT
|
| 257 |
+
);
|
| 258 |
+
""",
|
| 259 |
+
"Find the average salary by department": """
|
| 260 |
+
CREATE TABLE employees (
|
| 261 |
+
id INT PRIMARY KEY,
|
| 262 |
+
name VARCHAR(100),
|
| 263 |
+
department VARCHAR(50),
|
| 264 |
+
salary DECIMAL(10,2),
|
| 265 |
+
hire_date DATE
|
| 266 |
+
);
|
| 267 |
+
"""
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
apply_example = st.button("Apply Example")
|
| 271 |
+
if apply_example:
|
| 272 |
+
question = example_option
|
| 273 |
+
table_context = example_contexts[example_option]
|
| 274 |
+
st.session_state.question = question
|
| 275 |
+
st.session_state.table_context = table_context
|
| 276 |
+
st.success("Example applied! Click 'Generate SQL Query' to see the result.")
|
| 277 |
|
| 278 |
+
# Button to generate SQL
|
| 279 |
+
generate_button = st.button("Generate SQL Query")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
# Display results
|
| 282 |
+
with col2:
|
| 283 |
+
if generate_button and question:
|
| 284 |
+
with st.spinner("Generating SQL query..."):
|
| 285 |
+
# Record start time
|
| 286 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
+
# Generate SQL
|
| 289 |
+
raw_sql = generate_sql(model, tokenizer, device, question, table_context)
|
| 290 |
+
cleaned_sql = clean_sql_output(raw_sql)
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
# Calculate elapsed time
|
| 293 |
+
elapsed_time = time.time() - start_time
|
| 294 |
+
|
| 295 |
+
# Display results
|
| 296 |
+
st.subheader("Generated SQL Query")
|
| 297 |
+
st.code(cleaned_sql, language="sql")
|
| 298 |
+
st.info(f"Query generated in {elapsed_time:.2f} seconds")
|
| 299 |
+
|
| 300 |
+
# Display explanation
|
| 301 |
+
st.subheader("Explanation")
|
| 302 |
+
st.write("This SQL query translates your natural language question into a database command.")
|
| 303 |
+
|
| 304 |
+
# Option to copy to clipboard (using JavaScript)
|
| 305 |
+
st.markdown(
|
| 306 |
+
f"""
|
| 307 |
+
<div style="margin-top: 20px;">
|
| 308 |
+
<button
|
| 309 |
+
onclick="navigator.clipboard.writeText(`{cleaned_sql}`);this.textContent='Copied!';setTimeout(()=>this.textContent='Copy to Clipboard',1500)"
|
| 310 |
+
style="background-color:#4CAF50;color:white;padding:8px 16px;border:none;border-radius:4px;cursor:pointer"
|
| 311 |
+
>
|
| 312 |
+
Copy to Clipboard
|
| 313 |
+
</button>
|
| 314 |
+
</div>
|
| 315 |
+
""",
|
| 316 |
+
unsafe_allow_html=True
|
| 317 |
)
|
| 318 |
+
else:
|
| 319 |
+
st.info("Enter a question and click 'Generate SQL Query' to see the result here.")
|
| 320 |
+
|
| 321 |
+
# App footer and info
|
| 322 |
+
st.markdown("---")
|
| 323 |
+
st.markdown("""
|
| 324 |
+
### About
|
| 325 |
+
This app uses a fine-tuned language model to convert natural language questions into SQL queries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
- **Model**: [onkolahmet/Qwen2-0.5B-Instruct-SQL-generator](https://huggingface.co/onkolahmet/Qwen2-0.5B-Instruct-SQL-generator)
|
| 328 |
+
- **How to use**:
|
| 329 |
+
1. Enter your question in natural language
|
| 330 |
+
2. If you have specific table schemas, add them in the Table Context field
|
| 331 |
+
3. Click "Generate SQL Query"
|
| 332 |
+
|
| 333 |
+
Note: The model works best when table context is provided, but can generate generic SQL queries without it.
|
| 334 |
+
""")
|