Spaces:
Build error
Build error
| import contextlib | |
| import torch | |
| from backend import memory_management | |
| def has_xpu() -> bool: | |
| return memory_management.xpu_available | |
| def has_mps() -> bool: | |
| return memory_management.mps_mode() | |
| def cuda_no_autocast(device_id=None) -> bool: | |
| return False | |
| def get_cuda_device_id(): | |
| return memory_management.get_torch_device().index | |
| def get_cuda_device_string(): | |
| return str(memory_management.get_torch_device()) | |
| def get_optimal_device_name(): | |
| return memory_management.get_torch_device().type | |
| def get_optimal_device(): | |
| return memory_management.get_torch_device() | |
| def get_device_for(task): | |
| return memory_management.get_torch_device() | |
| def torch_gc(): | |
| memory_management.soft_empty_cache() | |
| def torch_npu_set_device(): | |
| return | |
| def enable_tf32(): | |
| return | |
| cpu: torch.device = torch.device("cpu") | |
| fp8: bool = False | |
| device: torch.device = memory_management.get_torch_device() | |
| device_interrogate: torch.device = memory_management.text_encoder_device() # for backward compatibility, not used now | |
| device_gfpgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
| device_esrgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
| device_codeformer: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
| dtype: torch.dtype = torch.float32 if memory_management.unet_dtype() is torch.float32 else torch.float16 | |
| dtype_vae: torch.dtype = memory_management.vae_dtype() | |
| dtype_unet: torch.dtype = memory_management.unet_dtype() | |
| dtype_inference: torch.dtype = memory_management.unet_dtype() | |
| unet_needs_upcast = False | |
| def cond_cast_unet(input): | |
| return input | |
| def cond_cast_float(input): | |
| return input | |
| nv_rng = None | |
| patch_module_list = [] | |
| def manual_cast_forward(target_dtype): | |
| return | |
| def manual_cast(target_dtype): | |
| return | |
| def autocast(disable=False): | |
| return contextlib.nullcontext() | |
| def without_autocast(disable=False): | |
| return contextlib.nullcontext() | |
| class NansException(Exception): | |
| pass | |
| def test_for_nans(x, where): | |
| return | |
| def first_time_calculation(): | |
| return | |